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FOREWORD

This report represents one phase of an analytical investigation of handling
qualities for multiloop airframe-human pilot systems. The research reported
was sponsored by the Flight Control laboratory, Aeronautical Systems Division,
Air Force Systems Command, as part of Project No. 8219, Task No. 821905. It
was conducted at Systems Technology, Inc., under Contract No. AF 33(616)-8024.
The ASD project engineer was Mr. R. J. Wasicko.

The authors would like to acknowledge the fine work of J. Taira and
Dolores Lewis in the preparation of the final manuscript.
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ABSTRACT

-Two related facets of feedback system analysis are considered-the
calculation of closed-loop response and the determination of the effects

N- on closed-loop behavior of variations in open-loop parameters. The con-
nection between the modal response coefficients (partial fraction expan-
sion coefficients of the closed-loop transfer function), the sensitivity
of the closed-loop poles to variations in the open-loop gains', poles, and
zeros, and classical sensitivity are developed. A comprehensive summry
is given of methods for detexrining modal response coefficients and 

Oct-

sensitivities from open- or closed-loop transfer function representation.
Response formulas for periodic or power series inputs are derived in
terms of the modal response coefficients, with conventional error coeffi-
cients as a special case. The initial developments are for single-loop
systems with first-order closed-loop poles; these are extended to cover
multiple-order closed-loop poles, and generalized to multiloop systems.
Examples are given using jo, S', j, and shifted Bode plots, root locus,
and analytical transfer function representations.
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__
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E Error coefficient

- F I  Numerator of closed-loop transfer function 0'-

F2  Denominator term of closed-loop transfer function (denominator is 1 + F2 )

G(s) Open-loop transfer function ,.

Controller transfer function
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Gf Feedback transfer function

kGk  Transfer function of kth element in multiloop system

Grc Closed-loop output/input transfer function

Gre Closed-loop error/input transfer function

h Altitude -"

h Index

S Altitude/elevator transfer function
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I(t) System response to unit step input
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k Number of free s's in denominator of G(s) 19

K Bode gain of G(s)
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-- Z-1 Inverse Laplace transform I
m Number of poles of G(s) minus number of zeros

M Index for power series inputs

n Number of zeros of G(s)

N Order of closed-loop pole

N Noise
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q Negative of closed-loop pole

:Q Modal-response coefficient

e s) See Eq 8, 98, and 166

r(t) System input
m~- - -- -
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R Radius of curvature of E plot

R Response coefficient

s Iaplace transform variable

• -Sensitivity of qi to X,.

arc d 1n Grc

-GcS Classica. sensitivity, d in xdix

t Time

1/Th See Eq 194'

l/Te See Eq 194

u(t) Unit step at t =0 1
w(t) System weighting function (response to unit impulse input)

Y Controlled-element transfer function

Yh Altimeter transfer function

YElevator-servo transfer function"

iiiYO Equalization of pitch attitude feedback MF

z Negative of open-loop zero . w

a Numerator polynomial of G(s) S.

Denominator polynomial of G(s)

8 Elevator deflection

8(t) Unit impulse at t = 0

Delta function (8 = 0 for i j, 8= 1 for i =j)

Denominator of G2 G I + G2G3) (multiloop example),""-

Damping ratio

ts Damping ratio of shifted roots

e Phase of G/K

eb Pitch attitude/elevator transfer function

Six
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K Root-locus gain of G(S)

KCL Root-locus gain of closed-loop transfer function
KCL

Xq Number of closed-loop poles of smaller magnitude than qi

Xu Number of right-half-plane zeros and unstable closed-loop poles of
larger magnitude than qi, plus one if K1(1 + Kb~)<

z Number of open-loop zeros of smaller magnitude than qi

V Magnitude of s

Real part of s divided by magnitude of s

a Real pat ofs

-r Dummy variable of integration

(P Phase of G(S)

PN Derivative ANP/6(log P4N in deg/(dec)N

tan1 uo/qi

k tan-1 bk/ak L
w Natural frequency
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SECTION I L

INTRODUCTION

A. GENERAL LINEAR SYSTEM ANALYSIS PROBLEM

1. The Analysis Problem Defined

In this report detailed consideration is given to two major facets of

feedback system analysis-the effects of component variations on system transfer

functions, and the connection between transfer function characteristics and L -L

system time responses. For constant-coefficient linear systems typified by the

Ni. single-loop system shown in Fig. I, the system analysis problem shall be con-

sidered here to consist of five essential steps:

a. Delineation of nominal open-loop system characteristics.

This step ordinarily starts with differential equations
describing the nominal controlled-element characteristics -
and one or more controller possibilities. The step is
concluded when one or more nominal open-loop transfer

functions, G(s), are available, in factored form. for
further analysis.

b. Determination of nominal closed-loop transfer functions,
Grc(S) and Gre(s), from the open-loop transfer function(s).

c. Calculation of closed-loop system time responses for
pertinent inputs.

d. Determination of the changes in G(s) resulting from the
expected variations in the controller and controlled-
element characteristics.

e. Consideration of the effects of open-loop system variations
on closed-loop behavior.

The major topics covered in this report are concerned with steps c and e.

although desirable techniques to accomplish steps c and e are somewhat dependent :..j

on the methods used in steps a and b.

Original manuscript submitted August 1962; revised manuscript released by
authors November 1962 for publication as an ASD Technical Documentary Report.
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H(s) + E~s Gs) C(s)

Open-Loop Transfer Function:

C(s) sn + a,51 .. ann j=G(s) = ~)=K 2 +*a -K

mn+n +b m+n m+n-2r--s I~ + b2 s +.bn- bim+n-i

(s -j

=K K K=
13(s r+n

ri+

sk Bcs) kmn-k

Output/Input Transfer Function:V70
4 n

K fi(s+ zj)
C(s) 1 G(s) - (s) + K L s

+i K80) (s+ im2l

Error/Input Transfer Function:mn

E~s) _ 1n(s + (spi)
Gre ~s) 1 i=) ns

R(s) -~s I + G(s Ps + KcL(S) =m+nV(I + K80) (s + qi)

Figure 1. Single-Loop Linear Feedback System and Basic Notation
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Delineating the open-loop characteristics in terms of a transfer function

G(s) is extremely simple for time-invariant linear systems because transform

-" ~. methods can be used to convert the system differential equations to algebraic

equations. This conversion permits the intermediate steps in an analysis

sequence (e.g., reduction of simultaneous equations using Cramer's rule,

transfer function development and manipulation) to be carried out using

algebraic forms. Most such forms are rational polynomials, and the remainder

can usually be approximated by this type of function. Thus, with the possible

exception of polynomial factoring (which also enters step b), the delineation

of open-loop transfer functions in the form indicated in Fig. 1 is basically

elementary, as is the extension to similar open-loop transfer functions in

multiloop systems.

The second step in the analysis sequence, i.e., given G(s), find Grc(s)

-/, and/or Gre(s) , is the central problem of feedback systems analysis. Trivial as

it may seem, amounting only to finding roots of I + G(s) = 0 when G(s) is given,

a great deal of effort has been devoted to finding better methods for performing

this operation. An eclectic view of this step, for single-loop systems, is

presented in Ref. 1. Various representations of the open-loop transfer function

(such as G(jw), G(+o), and G( ,Ii) Bode plots and pole-zero locations) are used

there as part of a unified combination of methods to find closed-loop transfer

functions in factored form. The techniques of Ref. 1 have also been extended to

\ I multiloop systems in Ref. 2.

2. System Time Response Behavior

When closed-loop transfer functions are available in factored form step c

is, in principle, an elementary inversion process from the transform to the time-E

94 domain. The major operation involved can again be algebraic, e.g., the system

response to a unit impulse input requires the resolution of the transfer function

Grc(S) into a partial fraction series. This algebraic operation is then followed

with term-by-term inversion to the time domain. Thus, using the Grc(s) form

shown in Fig. 1 (for m > 1),
n

K HI (S + Zj) p.
.; ~j=l 1 k,. j ~Grc (s)= mn )

r- rm (s + qi)

=I.,3



-. The first step is to resolve Gre(s) into partial fractions which, assuming that -

-. -"" there are no repeated closed-loop poles, results in

* G'(s) =);'""~ += qi

" Then, inverse transforming,

1 m+nSr[ar(s)] = e
,I-

gives the system time response to the unit impulse input.

Standard procedures for finding the modal response coefficients-the Qi

above--are routine but tedious. Techniques for findiug the modal response

coefficients from the open-loop transfer function G(s) are available but not

too well known. So, the analyst often stops when Grc(s) is known in factored

form, secure in the knowledge that the time variation portions (the eqit
.. terms) of the system response are defined by the qi's appearing explicitly in

.. the closed-loop transfer functions, and that the relative magnitudes of these

time variations (the 0 i's) are indicated there implicitly. Much of this report

is devoted to developments and methods which provide the modal response coeffi-

cients directly from the open- and/or closed-loop transfer function representa-

tions used in the second step of the general analysis procedure. Using these

methods, the process of finding modal response coefficients (and system time

responses) becomes a mere adjunct to the second step rather than a separate,

- often neglected, stage in analysis. Further, by extending the techniques to

multiloop systems, the third step in the general analysis problem gains the

same status of completeness as the first two already possess. -:
3. System Sensitivity to Parameter Variations

.. One reason for the fifth step (effects of component variations on system

characteristics) is obvious-the system assumed in an analytical study will

never precisely match the actual physical system, so it is important to know



the effects of possible variations. A second, more subtle reason is that a

genrral knowledge of the effects of parameter changes can be used as a guide to

system modifications which would improve the over-all perforrance. For both of

- . these reasons -easures of closed-loop system sensitivity to open-loop system

oarameter variations are an integral part of the analysis problem.

Notions about system sensitivity were in the forefront when the feedback

concept was initially developed. This was natural, even unavoidable, since
feedback systems possess the "fundamental physical property that the effects of

variation in the forward loop, whether they are taken as changes in G(s) or as

departures from strict linearity or from freedom from extraneous noise, are

reduced by the factor 1 + G in comparison with the effects which would be

observed in a non-feedback system."* Accordingly, sensitivity measures were

indispensable to any rational discussion of feedback systems, and a useful,
classical definition of sensitivity was made one of the two mathematical defini-

tions of feedback (Ref. 3). Except for a minor modification (Ref. 4) this

definition, by Bode (Ref. 3), remained unchanged for over a decade. Perhaps

this static nature, surrounded by dynamic growth in most other areas of feedback

systems engineering, made the concept fade-in any event, whole cadres of

neophyte systems engineers were trained with precious little exposure to sensi-

tivity concepts. In recent years classic sensitivi.ty has become a more popular :

.4- subject in automatic control (Ref. 4 and 5). Finally, the emphasis on pole-zero

- .specifications for system characteristics gave rise to new conceptions of sensi-

tivity, with associated new measures. These, called here "gain," "(open-loop) MVW

pole," and "(open-loop) zero" sensitivities, were evolved to account for changcs

in the position of closed-loop poles due to shifts or changes in open-loop gain,

. poles, or zeros. A number of thesis studies and research efforts, such as those

reported in Ref. 6 - 13, have gone a long way toward bringing this subject to a

logical conclusion.
L

In the simplest terms, sensitivity relationships connect open-loop differen-

tial variations with closed-loop pole differential shifts. Thus, the differential

Paraphrased quotation from Ref. 3, p. 44.

"-~' '. 
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shift of a closed-loop pole is given by

n m+n
dq S + S dz. + Sdp-S K - + zZj j 1 s

where the ST factors are first-order sensitivities and the differentials dzj,

dp and dK may be interpreted as incremental changes in the open-loop parame--i
ters.* The gain sensitivity, S , is basic, since the pole and zero sensitivities F

can be related to it, and since it is a component of the classical sensitivity.

When the sensitivity factors are known, they may be combined with the results

of the fourth step in the general analysis sequence (estimates for K, zj, and pj

uncertainties) to provide tolerances on the closed-loop roots. Further, a ,,1

knowledge of the Si values, and of their connection with system parameters, can

-lead to system changes which minimize the system variations to element deviations.

Sensitivities can also be very useful in the synthesis problem. Once a
trial controller has been formed, the sensitivities permit the designer to

L_ -.
estimate what changes he should make in the controller to obtain a more desirable

set of nominal closed-loop poles. This approach is particularly beneficial for

multiloop systems where the effects of inner-loop parameters on the finL? closed-

loop poles are frequently obscure.

Sensitivities also have great value when a digital computer is used as the

prime means of control analysis. By extending the program to compute sensitivi-

ties, the designer can use a manual or automatic iteration scheme to "home in"

on the best controller rather than doing a costly parametric investigation of N

all the controller parameters.

On the surface, steps c and e of the analysis problem appear to be separate

and distinct. However, there is a strong tie between the two--the gain

ih[5*Note that in a strict mathematical sense the closed-loop poles are -qi, the

open-loop zeros are -z- and the open-loop poles are -p.. The notation used in

this report (Fig. I) has been chosen to agree with a standard servoanalysis
convention which has transfer function factors as (s + zj) and (s + pj).

6o-_ .
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sensitivities being, in fact, equal to the modal response coefficients for

single-loop systems with single-order poles. This close connection provides

additional methods for the calculation of modal response coefficients and gain

sensitivities from the ccnventional open- and closed-loop system representations.

These methods can also be extended to multiloop situations where sensitivity

concepts should ultimately be very heliful in reducing to well-understood terms

the many puzzling interactions present.

B. OUTLINE OF THE REPORT

The remainder of this report is organized into four sections (II through V).

The basic relationships for modal response coefficients and sensitivities for

single-loop systems are developed in Section II. Several methods for evaluating

the modal response coefficients and sensitivities are derived in Section III.

Section IV extends the developments to multiloop systems, and Section V summa-

rizes the important results.
F..

The developments of Section II begin with the modal response coefficients

for single-order closed-loop poles. The connections between the modal response

coefficients and the closed-loop responses for simple inputs are developed.

Then the sensitivities and their relationship to the modal response coefficients

and classical sensitivity are derived. The final article contains the modifica-

tions and extensions to the above which are necessary for systems with multiple-

order closed-loop poles.

The evaluation methods presented in Section III are grouped as requiring

1. Direct calculation
2. Root locus plots

3. Open-loop Bode or plots
4. Closed-loop Bode asymptotes

The numerical results obtained in an illustrative example are presented to indi-

cate the accuracies obtainable with each technique. Details of the computations

are given in the Appendix.

<-'.'... The extensions for multiloop systems, which are given in Se.tion IV, generally V

C.%-.K.,rallel the developments in Section IH. Section IV concludes with an example

for a flight control system with pitch angle and altitude feedbacks to elevator.

*0 --- "
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-. The final section, Section V, sumarizes the major identities and relation-

shims developed in this report. The results have been put in a series of tables

to provide a ready reference.
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SECTION I

MODAL RESPONSE COEFFICIENTS AND SENSITIVITIES
" iT..,

-$ A. MODAL RESPONSE COEFFICIENTS AND SYSTEM RESPONSES

For the single-loop system shown in Fig. 1 the feedback system analysis

process of interest here can be presumed to begin with a given nominal open-

loop transfer function G(s) in factored form. The results of the next stage of

analysis are the closed-loop transfer functions Grc(s) and Gre(S)., which can
also be in factored form. The closed-loop system has but one input, r(t)', and

two observable outputs, c(t) and e(t), so these two closed-loop transfer func-
k : _

tions together constitute a complete mathematical model for the system. In
essence the two open-loop elements of Fig. 2 replace the single open-loop trans-

fer function G(s) plus the feeaback connection (Fig. 1) as a system model.

S C(s)
~~Grew) -

System Output

R(s)

Input

System Error

I.

Figure 2. Open-Loop Elements for Single-Loop Feedback System

The closed-loop transfer functions can be combined with transforms of input
functions to compute output time responses using routine inversion procedures.

The system's natural modes are explicitly displayed by the qi's of the transfer

function denominator factors, but the relative magnitudes of these natural modes

are indicated only implicitly. A basic set of these magnitudes, or modal

9
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response coefficients, are explicit features of the weighting functions,, which

represent the system time responses to a unit impulse input. Thus, a complete

physical picture of system response characteristics is most easily achieved when

both the transfer functions and weighting functions (or their constituent modal

response coefficients) are known. To form a complete analysis structure, it

should be possible to find the coefficients from either the open-loop or the

closed-loop transfer functions, i.e.., they should be explicitly defined by the

elements contained in either Fig. 1 or 2.

In the present article modal response coefficients will be related to open-

and closed-loop transfer functions for systems containing only first-order

closed-loop poles. Several useful connections between the m+n modal response

coefficients will also be developed. The coefficients will then be used as C"j-'
A. elements in system weighting functions to show their connection with system

responses to various simple time function inputs. Subsequent articles in this

section will relate the coefficients to sensitivity measures, and will generalize

the developments to systems containing multiple-order poles. The actual determi-

nation of the coefficients from the several forms of transfer function represen-

tation (e.g., Bode and pole-zero plots) will bE deferred to the next section.

1. Modal Response Coefficients

The system input-output weighting function is the output, c(t), response

when the input, r(t), is a unit impulse. Since the laplace transform of a unit

impulse is unity, this weighting function, w(t), is simply the inverse Laplace i.,
'.7, .

transform of the closed-loop system transfer function Grc(s)'

w(t) LLGrc(sJ M

If the number of poles of Grc(s) is greater than the number of zeros (m_ I)

and the closed-loop poles, -qi) are all first order, then a partial fraction

expansion of Gr (s) results in

~~w(t) : sf

(2)m+n t

10



1." Q is the ith modal response coefficient. It may be evaluated from

Q = =Is + qi)Grc(s (3)
s---q i -s=-q..

If m = 0. the bracketed quantity of Eq 2 has the constant term K/1 + K) added,

and the corresponding time response contains an additional term Kb(t)/(1 + K).

""- For real systems m _> 1 always, if higher frequency characteristics are taken

into account; but low frequency approximations, for which m = 0, are often used.

As an aside from the main argument, it is worth noting thatsplitting Grc(s) into partial fractions, as in Eq 2, is equivalent to

replacing the (m + n)th order differential equation for w(t) by m + n
first-order differential equations of the form

*i(t) + qiwi(t) = Qi5(t), i = 1, 2, .. , m + n (4)

where wi(O) = 0 and the total weighting function is

w(t) = wl(t) + w 2 (t) + "" + wi(t) + "'" Wm+n(t) (5)

Thus the total weighting function is equivalent to the summed responses

of m + n first-order systems excited by an impulse input, as shown in

Fig. 3. The modal response coefficients can also be thought of as
initial conditions on unity-gain elemental systems (the Qj1s in Fig- 3
replaced by 1 :s) which, with no other excitation (no impulse input to
the system), results in a system output equal to the weighting function.
For this interpretation the elemental differential equations would be

wi(t) + qiwi(t) = 0, i = ,, .. , m + n (6)

where wi(O) =Q

The modal response coefficients can also be evaluated directly from the open-

loop transfer function. In terms of G(s), Eq 3 can be written as

(s + q9)G(s)]
Qi L ki + G(s) Js=_q.

11 7.%
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, :, Q~2 w2 (0t)l..

'":' + q3
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. +,,i, U f Iwi )"+ '

Qi I wi(t)

7 -w4

. .- - -(t)

121

1:7+ .I l
bL J
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,':. , Figure 5. Elemental First-Order Systems Corresponding to ,--
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At this point it is convenient to introduce a new variable, (s), which is

defined as

* . (s + q) G(s) (8
-- Qi(s) = 1 + G(s)(8)

and from Eq 7 Q- = Q(9).

Rewriting Eq 8 as [1 + G(s)] Q (s) = (s + qi)G(s)
'.*

Q4L! and differentiating with respect to s, gives

dQ1 (s) + o-(s)(s) s) G(s) + (s + qi) dG(s) (10)s ds ds

Evaluating Eq 10 at s -qi and recalling that G(-qi) = -1,

= Q~i(q~) =[d57(ds]()

: : , 
-

(1 1
., .,s=-qi

Besides providing a means for evaluating the Qi's directly from the open-loop

transfer function, Eq 11 will subsequently be used to show that a simple rela-

tionship exists between the modal response coefficients and the gain sensitivities

o defined in Article B of this section.

The modal response coefficients for the input-output weighting function,

O w(t),, are closely connected with similar coefficients for the input-error weight-

ing function, wre(t). In general the error is given by

e(t)= r(t) - c(t) (12)

13
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so the error response to a unit impulse input will be

"re t) 5(t) - w(t)

m+n
e m

1 m+n -qit
8+K (t)- e -  m=O

The modal response coefficients for. the input-output weighting function are thus K
seen to be the negatives of similar coefficients for the input-error weighting

function.

Certain simple combinations of the modal response coefficients have properties

which are occasionally useful. These are most conveniently developed by matching

coefficients in expansions based on the partial fraction form and the closed-loop
-'.-1 .I

system expressions given as part of Fig. 1. In root-locus form, when m 1,

n K.
K fi (S+Zj)

I Ore G s) = (S()) j=X (14)
rcP(S ~ As+ KtI, m+n

f1 (s+ qi)
i=IU1

Grc(S); when m 1 1, is also equal to

Grc(s) = s + qi (15)

Equating Eq 14 and 15, and multiplying both sides by the product of the denomi-

nator factors,

m+n m+n

i s + i (s +qj)

j=1-

m+n r im+n- m+n \ nq2 1 (16)
sjI +( q j) - + (6

, "<J i=Ij=1

SKt(S)

14~
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-~ The sum of the negatives of the closed-loop poles is (Ref. 1), for m> 1, K

m+n.-~qj = bl + K& (17) 2

j-1
m+n

where b, is the sum of the negatives of the open-loop poles b, = p and 81.
- fr 'j=1

is the Kronecker delta (, 0 for i j, = 1 for i = j). Equation 16 then

becomes

- gn

m+n m+n-2 m+n m+n +n + n-i +

s [(b I +K5 )Q - + .... Ks +KKaI 1  +""

-' " ~(18)': "

By matching coefficients,

minQi = K81  (19)

m+n m+n 2(bl + K&) Q- i 3 .qi =  Km+ Ka,8 1 (20)

Inserting Eq 19 into Eq 20

m+n

qi = K(bl a, + K) 1  6 - 2 (21)

The results of Eq 19 and 21 qtre summarized below.

1 2 >2

m+n
QiK 0 0

m+n

Q-1 qi K(bl a + K) -K 0
" - ,i=1



The Bode form for Grc(s) can also be used to establish similar results.
M-e smr_!est of these occurs when s is allowed to approach zero, i.e., for

";--m -- 1,["

m+n QA(s)

nm i % n=(22)
s-o s + qi - 0 skB(s) + KA(s)

or 11 , k i r
-'<-m+n Q"in I + K k =0 (23),

_ 0 , k g -

Equations 19, 21, and 23 can be used to calculate one or two of the QI's if all
; -: ~. the others are known, or as checks on computation.

2. System Responses to Simple Inputs

Besides their central role in the system's weighting functions, the modal
J *response coefficients also appear in simple ways in the system response to

other elementary inputs. To illustrate this feature the outputs resulting from
steps, periodic inputs, and inputs composed of power series in time will now be

. examined.

a. Response to Step Inputs. Next to the weighting function the step
response is the most common transient response model used in systems analysis.
The indicial response, or response to a unit step input, is just the integral

of the weighting function,

t-
I(t) = w(-r)d-r

Jo

-= £ Grc(sJ

:'S'S =I sqi qi 0 (24)

where the Qis'S are the partial fraction coefficients for the step response, m 1,
and the q's., are all first order.

16
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The Q.is are related to the modal response coefficients, Qjis, by

Qi s  = 1 (s + qi)Grc(s=

Q, (25)
qi

The amplitude of the step component in the system output, %, is

'1 , k~l

k' 1

K (26)

Qo = [Grc4 s ) k K

0 , k< -

or, comparing Eq 26 with Eq 23,

m+n
=o [Grc(s)] E (27) %

s=O i=I qi

Qo is the magnitude of the output's final value when the input is a unit step

and the system is stable (real part of qi > 0). Combining Eq 24, 25, and 27,

m+n eit (8(1 -e - q t  q 0 (28)

i , i

b. Response to Periodic Inputs. Any periodic input may be represented by a

Fourier series of sine and cosine terms at various frequencies. Because the

systems considered here are linear, the output is the sum of the outputs due to

each term in the Fourier series. Consequently, only one sine and one cosine

input need to be considered. To modify the periodic input (which is defined

from -< t 4 - from a Fourier series standpoint) to a periodic-like input

which is zero until t = 0, the elemental periodic input will be multiplied by a

unit step, u(t). The input is then

14, 17



rt N [ak cos + bk sin aktlu(t)

= [ck cos (akt - *k) u(t) (29) U

2 2 -1bk
where c 4Iak + btan

The response for an arbitrary input is related to the impulse response by

the convolution integral, i.e.,

ft
c(t) - r(t w d

K;t (30)

f r(T)W(t - r)dTr
Jo t

With the weighting function expressed in terms of the modal response coefficients

(Eq 2) and the input given by Eq 29, the output becomes. using Eq 30,

mnQl}bkUa - akqi) e 1i" 'k
" "c(t) = e

LI 2 2

m+n+ [a k cos (ak t - pki) + bk sin (akt - pki) (31)
+~~ (J31o- ,. i=1 + O

where Tki = tan-1 o°/qi" In terms of ck and *kthe steady-state portion of*Eq 31 (the transient first term is unchanged) is

~m+n
i= Qi

The ith terms in the responses of Eq 31 and 32 are just the response of the ith

elemental first-order system shown in Fig. 3 to the periodic-like input given

by Eq 29. Considering only the steady-state portion, each elemental first-order

system scales the input amplitude by the aplitude ratio Q/q?+ and con-

tributes a phase lag kIIIi
f'* .18
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Equation 31 or 32 can also be used to Drove the well-known fact that the

- amplitude ratio and phase of the steady-state response to a sinusoidal input of

* frequency ak is the amplitude and phase of Grc(Jah). Thus, in more conventional

form,

' Css(t) = ckjGrc(jak)l cos [mt - + *4 rc(jk)] (53)

where
m+n i m+n Qiqi

IGrc(j~c)i cos rGc(ja) = Fcos = 2 "
7i=1 +

and

m+n Qi nIG (jk)l sin +Grc(j3k) = - sin cki = - n

=+ +.

For a periodic-like input containing all the terms of a Fourier series, i.e.,

= Lk cos + bksin at]u(t) (34)

k=_O

the response will be., by superposition, & -

m,: m QI(bkok - akqi) -qit

c(t) E E. e
k=O i=I + 2-

_ 1 __ k cos ('t -,k i) + b sin (a.t - (35)

'-~ 1-Lk O k '~Pki) 35

c. Response to Power Series Inputs. For inputs which can be represented

by a power series in time, a procedure similar to that above can be used. It

is again only necessary to consider the response to one term. For an input of

(dM/M:)tM the response is (assuming M is a non-negative integer and that the(dMM!t , asuin

input is zero for t < 0)

"I A,

4,
.O

S. ."
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F-.F7

c~) =~m n ~ l l - L-'-tJ q 0 (6

Thus, for an input of

r(t) . tt 0r M! (17)4 t

=0 t<O

the response is

- .:c(t) j 0 (38-)-
"i=r M (-qi) j--O J ! Eli

For example, the response to a unit step (M = 0) is

-1-n(t) = mq (eqit\ O (39)

which corresponds to the previous results (EL'q 28). For a unit ramp input,K

L c(t)]Unit ramp 2

The modal response coefficients can be related to conventional output and

error coefficients by using only the portion of Eq 38 which contains the power

series terms in the output, i.e., by ignoring the e transient terms. Then,

for a power series input

Z " ~ ~d t 2 +d3 t 3 + -- t>0(1

r(t) = d+ d t + t d t 0 (1 )

the output, less transient terms, will be 77'2

20...



[tilPower series only - ~ w %M+ M -jt
i1M=O (-qj) j=-O

By changing the summation index j to k =M - j and rearranging the order of' the

summations, Eq 112 becomes

- - M-k

[tJPower series only F4 k=O i - E1+ k( - (43)

k="1 i-1M ( )

From Eq 111 it can be seen that

00 d~tMk _dkr(t) (4

M=k (M k) d t

Combining Eq 413 and 44,

[cMt) Power series onlydrt) ____

m+n Q.m+n m+n Q.
=r(t) +-r t P-+ (t)+

,=1~i= qq 1 j 2

= For(t) + R, i(t) + R2P(t) + (--1(5)

The R's in Eq 4i5 are output response coefficients which are occasionally useful

N for special purposes. Far more conmmon are the error coefficients. The power

series portion of the error response to a power series input is

[e~t)]p(te
[et) owrseries only -r [t) -Power series only

-Eor(t) + Ej:i(t) +E 2i5(t) + * (46)

ki

21



Using the results of Eq 45, the error coefficients are seen to be
-.. -.
->.'- .. U

L-: !m, =10 1 1 R i- q-

mn= - =i

i=!

- m+n N

=2 -R = -~ F,

i= cj (47)

k1m+n Q
Ek = -Rk = (-1)+1 k+1i=1

Because of the many ways in which modal response coefficients can be obtained

these formulas are especially handy for the calculation of error coefficients. L-i

B. SENSITIVITY

:... The modal response coefficients discussed above are the last step in the

analysis problem for linear feedback systems if the open-loop transfer function,
G(s), is considered to be an exactly specified quantity. Unfortunately, the

poles, zeros, and gain of G(s) ordinarily vary somewhat about nominal values

which are themselves inexact. Thusanalyses are not really complete without F

some consideration of the effects of parameter variations. This purpose is

served by the sensitivity factors to be discussed in this article.

__As noted in the introduction, sensitivity measures have been a major concern

in feedback systems since the early days of feedback amplifiers. The pioneering

investigators defined a sensitivity function as one of the essential features in

a mathematical definition of feedback. This definition, which relates to the

over-all sensitivity of closed-loop transfer functions to variations in the open-

loop transfer function, we shall call "classical sensitivity." More recently

attention has been centered on the effects upon closed-loop poles of variations

22
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-in open-loop gain, pole, and zero locations. The sensitivities of this nature
we shall call "gain sensitivity, "ole sensitivity," and "zero sensitivity,",~ ~ ~ ~ ~gi senntstitndizrose.sttyt,".".

respectively. These sensitivities are especially important in servosystems

because most such systems exhibit only one or two dominant closed-loop modes. k

The variations of these modes with open-loop characteristics are therefore of

most concern, and the pole, zero, and gain sensitivities are of most value in

assessing the effects of the variations. So, the sensitivity functions for

closed-loop root variations will be the major topic below, with their relation

to classical sensitivity being a short aside. Again the developments will

presume first-order closed-loop poles, with generalization to the multiple-order

situation being deferred to the last article of the section.

1. Gain, Pole, and Zero Sensitivities ,

The purpose of this &rticle is to derive the expressions for the first-order

sensitivity of the closed-loop poles to variations in the open-loop gain, K, the
open-loop poles, -pj, and the open-loop zeros, - j. With all these parameters

being considered as variable, the open-loop transfer function, G, must be con-

sidered as a function of all of them, i.e.,

Then the total differential of G is

n m+n
dG ds + TdK + n +n5i (49)j d.

j=1 3 =

Because the closed-loop poles, -qi' are defined by the equation

[,-
1i + G(s)] S=-q, 0 (50)

the total differential of Eq 48 must be zero for s = -qi Setting dG = 0 and U-.

s= -qi in Eq 49, and rearranging terms gives

23
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d.Ii = K + (p.) dzi + "(51)
ss- jqi s=-q i  j=1 -s-qi

The variation in the negative of the closed-loop pole, dqi, can also be

expressed in ano'cher way by noting that qi depends only on K, the zj's, and the.."

pj's, i.e., :
= qi(Kzj.,Pj)

and writing another total differential as

CidK n qi m+n qi -

dqi K K~ + E idz + F -
=1 j=l

: n m+n --< ; = i  dI K
Ss- + E S' dzj + F Spdpj (52)

Here the factors K( qi/ K), qi/6zj, and 6qi /  are given a special symbol, S.

4-1] These are the first-order sensitivity factors. The subscript and superscript

notation indicates that a differential increment in the open-loop quantity,

defined by the subscript, results in a differential increment of the ith closed-

loop root equal to the sensitivity factor times the open-loop parametric

variation.

Equating like coefficients in Eq 51 and 52 gives

Si= KK q./

3 3 5-c-q,

3q = (G/aPz4s=-qi

.oq /OSspj

Note that the gain sensitivity is based on a fractional change in K, while the

pole and zero sensitivities are based on absolute shifts of pj and zj. These

24
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definitions were selected because they provide some simplifications in subse-

quent relationships. N:

If the open-loop transfer function, G, is written in root-locus form,

n
fi (s + zj)

G = < ()m+n

fl(s+ p.)
j=1

- the sensitivities are (remembering that at s= -qi G =-I)

',S i =- I r

s=-a !:=

S K (5zj zj -qi,.

Si
Si K
Pj q Pj

Examination and further interpretation of Eq 55 reveal four very interesting

properties of the sensitivity factors;-

a. The gain sensitivity is a factor in each of the sensitivity
terms. Thus, Eq 52 becomes

n dz. m+n dp._
d. SK[L + 0 + (56): '" L j = l j q i J j l - P J -

b. The gain sensitivity is equal to the modal response coeffi-
cient. This is easily seen by comparing the expression for
the gain sensitivity with Eq 11, i.e.,

=[" - q = si (57)

This equality is very useful since all of the properties
previously derived for the modal response cofficients are

"-:" *'- 2
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appjicable to the gain sensitivity. Using this correspond-
ence, other formulas for the gain sensitivity include

%-. 1=.
S s + qi)Grc(S (58a)

-,K s=-q

S(S+ qi) G(s)(
F~ sq (58b)

= 1 + G(s) s=.q i

n
K H (-qi + zj)

j=1 (58c) Vi m+n

(1 + K60) I (-qi + qj)
j=1

m+n
- "I (-q + pj)

j=1 mn(- q)(58d)"- m+n
' .. 0+ K) 1"I (-qi + qj) ?

(1 +K8~)=1 +

jA

Another formula for S, which could have been derived previ-

ously for Qj, is a direct result of Eq 57:

= [dG -I sls qsK Qi =  Cs)/d-S FSs=-qi .?

zj qi j=1 qi P(

c. Various gain sensitivity combinations have the same simple

forms as the modal response coefficients. These follow from

the equality of Eq 57 and the previous results of Eq 19, 2 ,

and 23, i.e., for m >1 1

m+n K 1 'o

KK= m
1=2

K .b

.k 0 (oc)
q n+S K

• '" 26 <
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d. The sum of all the zero and pole sensitivities for each

closed-loop pole must equal one. This follows directly
from Eq 55 and 59. Thus,

n m+n
+ 1: = 1 (61)

j=1 j= 1 [

This initially surprising result is easily explained by
recalling a root-locus plot. If all the open-loop zeros
and poles are moved the same amount, all the closed-loop
poles will be moved by that amount.

The gain sensitivity can be interpreted in two ways which are physically

enlightening. First, Si is a measure of the slope of a conventional root locus.
K

As root loci are ordinarily plotted for fixed open-loop poles and zeros, the

only variable along the loci is gain. Thus the plot gives the zeros of

1 + G(sK) = 0 (62)

Taking the total derivative
G G. >

dG= -ds+-dK (63)

Along the locus dG(s) = 0, so

4. ~~ds = K K~

i~dKK
_S (64i)

V KKKK

dK/K is a real number, so the direction of ds along the locus for positive dK/K

will be given by -S' which, in general, will be complex. The minus sign appears

because S' is the sensitivity of qi which is the negative of the ith closed-loop

pole.

The second interpretation of S K derives from the same argument as that used

above by adding an additional step. The derivative of ln G(s) is

d ln G(s) 1 dG(s) (65)2(65)

dsG 7 ds:



or

i ds
SK d In G~s)

dsi

ds(67)
-dG/G (y

Thus the gain sensitivity is a measure of the shift in a closed-loop pole due
to a fractional change in the open-loop transfer function. Because only K

changes along a conventional root locus, Eq 67 is really no different from

Eq 64, except for the introduction of the logarithmic form.

2. Limiting Behavior and Special Cases

The magnitudes of gain sensitivities can cover the entire range of values

from minus to plus infinity. Yet, intuitive notions of "sensitivity" as a

general concept in closed-loop systems make part of this range appear unreason-

able. One part of the problem is a direct consequence of the sensitivity

definition, while another is associated with its first-order approximation nature.

A better understanding of both facets can be gained by an examination of limiting

cases.

In general, closed-loop poles depart from open-loop poles for low values of

gain, and proceed to either open-loop zeros or unbounded values as the open-loop

gain becomes very large. The gain sensitivity, as given by Eq 59, is

- (59)
, . K n 1 m+n 1F. +

j=1 - i j=1 qi "Pj

As K approaches zero, the closed-loop root - approaches the open-loop pole

from which it derives, i.e. qi --> Pi. Then the term I/(qi - pi) in Eq 59 is

dominant, so

F
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A1

si  --- o (68)
Sl-p

Similarly, as K becomes very large, n of the closed-loop poles approach open-

loop zeros. If the ith closed-loop pole is one of these, and it approaches the

jth open-loop zero so that qi zj then

10 (69)
S1K 1

4, q.i

Finally, m of the closed-loop poles have no zeros to go to, and hence become

very large relative to the pj and zj. The sensitivity for these poles is

S1 m m (70)

.M j-, j -

When the gain is sufficiently large for the open-loop zero db line to intersect

the high frequency asymptote, the open-loop transfer function is approximately

G (s) *

so that qi will be

S-V- (71)

* Thus, the sensitivity of the unbounded pole will be

V-K.

S Kj ----p m (72)

.-- -' :., Equation 72 indicates that the sensitivity increases as the mth root of K as :,,kLi;: , gain is increased, although for finite gains the sensitivity is always finice. ,,,

.k ,.29
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Another circustance in vhnich the sensitivity can become very large is

re v ealed by Eq 58d. Here it is apparent that the gain sensitivity for a closed-

lo= role becomes very large as that pole nears another closed-loop pole.

I.deed, as q, becomes eqal to qj, indicating a branch point on the root locus,

the gain sensitivity goes to infinity. This is to be expected since the sensi-

-: .tiv-ity factors defined thus far have not considered multiple-order, closed-loop

roots. As long as the gain is finite, an infinite gain sensitivity always

idicaltes multiple-order, closed-loop poles.

A sDecia-. sitation of considerable interest can occur when a closed-loop .-.

root lies beotween an open-loop pole and zero which are much closer to each other

than to all other o-e-!oop Doles and zeros. This is the so-called dipole case.

I e sensitivity for the bounded closed-loop Dole will be, approximately. ,j

Si 1iqi p

(zi - qi)(qi - Pi) (-,
° ~~(73) ..zi Pi

The maximum value of S' will occur when qi (z + pi)/2, for which S' becomes

SK] . 1 (Zi Pi )  (74)

3. Sensitivity Functions for Alternate Transfer Function Forms

The above equations for gain sensitivity are the same whether G is written

in root-locus or Bode form, i.e., S' = Sk. In fact, the equations are still

valid if some of the terms in G are in root-locus form and some are in Bode

* form. It is, however, necessary to modify the open-loop pole and zero sensi-

tivities for terms which are written in Bode form. From Eq 53 it can be shown

that for zeros and poles which appear in G in Bode form, i.e.. [(s/zj) + I or .-.

.- s/pj) + 1)1 the sensitivities are

30.
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i.-.%q Si

zj zj(zj- qi)

(75)
I.1

PJ Pj (qi - pj)

Frequently open-loop zeros or poles will occur as complex-conjugate pairs, IM

and variations in the system will change both zeros or poles. Consequently it

becomes desirable to introduce sensitivities for the parameters which define a

complex pair of zeros or poles. For example, consider a complex pair of zeros,

zI and z2, which are defined by their frequency, w, and damping ratio, , i.e.,

(76) ,

Z2 ) -( ico

For this situation it is useful to define frequency and damping ratio sensi-

tivities as

i qi qi dzl 6qi dz2
Si

S(77)
-qi 6q. dz qi dz2

s = = - +

It is easily shown from Eq 55 76, and 77 that if the term appears in G in

root-locus form (s2 + 2tws + the frequency and damping-ratio sensitivities

for a complex pair of zeros or poles are

±2( - tqi)S

S1 1

qF-- a78ixj

-; '.. T 2(D i K

where the upper sign is to be used for zeros and the lower one for poles.
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If the term is written in Bode form L(s2/aco) + (2ts/a) + the sensitivities

are

_±
2 qi ( ico K

"))q" (79) 1%+

: 2qicoSi
Si 2 1 2

- 2taqi + wA

For some cases it may be more convenient to define a complex pair in terms

of their real and imaginary parts, i.e.,

z = a + jb

= a- jb

In this case, with the term in root-locus form + as + (a 2 + b2  sensi-

.%f. tivities are

i qi ±2(a - qi)S

-:qi -2aqi + a2 + b"

(80) &"-

~q. ±2bS~

ql aq + + b

If the term is in Bode form [s2/(a2 + b2) + 2as/(a2 + b2) + 1], the sensitivities
:. . ' '"a re ,.,

-= ±2q. (a2 - b2  aq.)S

S1 K (

Sa 2 +b 2-

"" SIb (2a -qi)SK

oL1...______
a J - a ai +-

.5.
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4. Connection Between Classical and Pole, Zero, and Gain Sensitivities

-. As pointed out by Bode, the usual conception of feedback involves two distinct-

ideas. The first is the more obvious and common-that feedback implies a loop

transmission or return of some measure of output quantities to earlier stages of

the system. The second notion is that of a reduction in the effects of varia-

1 1_:.. tions in the elements of the forward loop.

To point up these old and well-known simple ideas, consider the system shown

in Fig. 4. Here Ga is the main controller, Gf the feedback element, Y the

mR E I  C

Ti Gf

Figure 4. Generalized Single-Loop System

controlled-element, and N is a lumped source of unwanted signals. The system

. Ij output, C(s), is

I + GaGfY 1 + GaGfYC:s' GY R+ Y

- 1

GrcR+ G2JN

Gre[GaYR + (82) U-8

:("' ~ ~~~Gay f[--]i:"
where Grc - G +GaGfY - , GGaGfY

re 1 1 afY G

Gre 1 +GaGfY 1 + G

The presence of the loop transmission, i.e., the existence of the feedback

element Gf, can lead to practical advantages when feedback is dominant. Thus,

1#("33 .."."
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when I >> 1, the out.-utamrdte

IC(s) (85

The relationshilp between out-out and input is rade Substantialy ineedn

0-0 the controlled-element, n the effect of unwanted signals on the output is
ra'te-riallY reduced (Ga being genexrally ver large tomke ossible theieaait
IC- >> I ). As an opaen-loonD control, the output -would be

C(s) = J G R+ III(4

The difference due to the closing of the loop is just the error/innut transfer s
function C-re. Thus Gre (the classical "return difference") is the fundanmenta-
measure of the improvement introduced by the loopD transmission.

To illustrate the decreased sensitivity effects, consider a differential
change in the closed-loop transfer functionCGrc- For regions in the s-plane
where Gc and G are analytic,

d~r = JvdGa + GadY- (Gay) 2 dGfj (85)

or, in terms of fractional changes,

dGrc 1+G dGa d dGf

Grc Ga G~

T e+ Gj

d~rc 1 dGa y dGfJ

Grc (87)
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The ben-eficial consequences of larg values for the open-loop t asf11er Afunction,

G, 2m decreas-In the effect on the over-all trarsfer function of fra~lo

* controller and controlled-elerent variations is apparent from Eq E7. Mie open-

IoDD VariationsdOjfa and dY/Y are decreased by the factor 1 /G. N~ote, howwever,

tin vriations in thie feedback elerents are reflected directly into variations

* of the closed-loop transfer function G.re, In general, the benefi cial reductio1n

i s determined by the factor- 1 /(1i G)--again the error transfer function is a

fundar-ental m~easure, this time of sensitivity.

Define, no-i, an over-all system sensitivity as

dGre dr/Grc d In Gre d 1nGre 8
S&7x- = _dIn x - d./x

where x is some earameter or element in the open-loop system. !f x is taken to

be the forward-loop controller transfer function, Pb, the controlied-elementRi
transfer function, Y, or the forward-loop gain, r.F, it is apparent that

S~r Grc Sr S K Gre (89)

This definition of sensitivity may be considered to be classical (Ref. 3 and 4),
although Bode's original definition amounted to the inverse of that defined here.

Eaination of the role played by the classical sensitivity in Eq 82,6,ad8

indicates the overwhelming importance of classical sensitivity as a fundamental

quantity in feedback systems.

Classical sensitivity can also be used in expressions involving open-loop

gain, pole, and zero changes. To illustrate this, return to the simplified

block diagram of Fig. 1 for which

G rc dGrc/Grc _ 1 =G~-*.
S0 G dGG -re (90) tE

The fractional change in the open-loop transfer function is given by
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72n dG - =-n~f dp (1
* G 7K s- - s .

i=1 __= -

so the fractional change in the closed-loop system eiiaraCteristics is just-

dGrc GV= fdK. n dz 'n dp (c2

Th lassical sensitivity is a function of s, and can ane over extremeI

values. In the frequency %,amain (s =jco) its imiting cases occur when IGI > 1,

- which usua 1 y occur-s for low frequencies, and IGI <« 1, which always occurs for

high frequencies (mn 1), viz:

SG Ii,) - ~ c)G(jco) I 1>

( 1 ,IG(jw)I «< 1

- :-- Therefore, on a classical sensitivity basis a "good" system is one with lots of
feedback-I G(jw) > I1 over a broad frequency range-hardly a revelation of

-- earth- shattering originality!

The classical and gain sensitivities are related in a very simple way. The -

relationship is most easily developed by noting that classical sensitivity

corresponds to the input-error transfer function which, in turn, can be written

in terms of the modal response coefficients,

* ±c -Y ----- ,m1(94)
SG Gre Ts=_

Since the gain sensitivities are equal to the modal response coefficients,

*G m+n Si
rc 1 Z K

i=G (s + q) mi(95)
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EqFuation 95 eymresses the classical sensitivity as a weighted sum of gain sensi-

tivities. This could be carried further formally be introducing pole and zero

sensitivities to replace the one (see Eq 61), but this seems hardly worthwhile.

Equation 95 also indicates that the gain sensitivities are the negatives of the

residues, evaluated at the closed-loop poles, of the classical sensitivity

(Ref. 10 and 12).

C. EFFECT-S OF Nth-0RDER CLOSED-LOOP POLS

The developments of Articles A and B are restricted to cases for first-order

closed-looD poles. This article considers the additional complexity introduced

by the existence of Nth-order closed-loop poles. With the exception of N = 2,

Nth-order closea-looD poles seldom occur in practice. The developments of this

article are, therefore, somewhat academic, although required for completeness.

This article is basically independaent of the main body of the report, so the

casual reader may skip it without seriously detracting from his understanding

of other material. The procedure in this article will be to retrace most of

the prior developments, noting what additions or modifications are required to

generalize the results in the case of an Nth-order closed-loop pole.

If -qi is an Nth-order pole, the partial fraction expansion of the impulse

response or weighting function, Eq 2, will contain the terms

" 1[__ _ Qi 2  Qi + + QiN
+ I - N]- -

2 N3(s+qj) (S+qi) (s + q)

N-1" ~ ~-qit[Q it Qi tN-.] ]

e ++ 'N- (96)

e1  [Ql+ 2 t + 
2

where the N modal response coefficients are evaluated by (N . __

[',c Qik  1 dN k  (s + qi )NG(s

-i NT- N-k 1 + G(S)., ls=-qi
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There is a useful relationship between QiN and a modified gain sensitivity,

-which will be developed shortly. To show the relationship, it is convenient to

introduce the variable

(s + q-)NG(s) (] '-[-' KIQi ~ s  - I + G ~s (98) ; ,

where

:. QN ( - ) -- qN

Rewriting Eq 98 as

N
[I + G(s)] *N(s) = (s + qi) G(s) (99)

and differentiating with respect to s, gives
:I.

.... 'N' dNs ~)) dG(s)
+ It (s) dG(s) N(s + qi)N-'G(s) + (s + qi) (100)11+ ~s ds QI d

Evaluating Eq 100 at s =-q;,

' o. FaoG s l T:.,

"\-QiN Ld"s ] = 0 (101)

therefore =[dG(s 0 (102)
,-,, .. s=-q i  ,

Repeated differentiation of Eq 100 shows that

-d 1G k < N-I (103)

L% ds S= -qi

-- N

and N - N - (104)

'N d G(s)]
L dsJSs=-q

i
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Equation 105 expresses the interesting property that when -q- is an Nth-order

pole, the first (N - 1) derivatives of G(s) with respect to s are zero at

s = -qi" Equation 104 is the general expression for QiN and reduces to Eq 11

for N = 1. This equation will be used to show the relationship of QiN to the

modified gain sensitivity.

A relationship between the N modal response coefficients can be derived

from the above by considering the functions

Q: -k- s )* (N=  IN -k ( s + q i ) N G ( s )

Qik(s) N - k)' dsN-k 1 + G(s)(I5

where Q (-q ) = Qik

Using an alternative expression for the closed-loop transfer function (Fig. 1),

Eq 105 can be written

n
K r (s + zj)1 d N k  j = I 1 6 -.. -

___S) = N - k).( N-k m+n io6)

(I + Kb) n (s + q j)
j=1

m+n
where fl (s + qj) = product of s minus each closed-loop pole except the

j=1 Nth-order one, -qi (there are m+n-N terms in the
jii product)

After differentiating once, Eq 106 becomes

n

1 N-k- 1  K II (S + Zj) m+n

Q(k ( s )  =N-k) dsN-k- m+n +L (sd ( ( ) qJ
@ (1 + K61) IT (s +qj)

j / i ( 1 0 7 )
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Combining Eq 107 with the formula for the derivative of a product,

f 1 d(108)P4hkO dh dsk-h

gives

o1 (() + L ]
j=j

dh [n0_ m+n __ 1o

kNk h=0 (I dsh I s+ j

N-k-i hn m+n:)h ]
d1 hQ h s -~ j= +s qj (109) %

N-k-) hh m+n h
qThs)0 ~+ dhik (N kj h! ! qT - q) ] (i

h=O dsh j~lj i

Once~j/ QiPaEenealaePyoeoftemtostob rsne i eto ;l
Eqii cn e se kt-lclt th eanng (N l - )cefin t fo h e th

orders poe(11Noeta0hecefcetsms)ecoptdi tesqec



"1N1 .QiN •-.Q~3 * i I .A somewhat similar relationship is given in .: i Qi~N-1' QN-2' QN-3 --.

Ref. 14. L-.R

Although the general expression, Eq 111, is rather complicated, for the most

common case of N = 2 it reduces to simply

ji
],]:, Qi = Q =1Jmjn 1 1..

For Nth-order closed-loop poles, the previous expression for the sum of the

modal response coefficients, Eq 19, is readily modified to

Qi +  Qil = K8 1  m> 1 (113)~i i

M7

L-!P-
where the summations include the Qi's for all first-order poles and the Qil's

for all higher order poles. The validity of Eq 113 can be shown very easily

from the partial fraction expansion of Grc(s). Equation 11 3 is obtained by

multiplying Grc(S) and its partial fraction expansion by s -nd letting s -. ,.

For Nth-order poles the system responses are considerably more complicated

than those given previously for N = I. For example, if -qi is a second-order
A pole the system response to an input of sin Wt contains the terms

L6

Q1 [ + e + qi sin wt w cos w]

2  qi + (q+ t e t

( +

r ? w2) sin aft - 2qia cos

.,1 IIL-
. , '-C \'



For an input of cos wt, the response conins.±l the terms

Q11 -qJ

q ;( [qe~* + jcos at+ asin]

+ W12- (q

+ (q~j -ci) cos wt + 2 qiaw sin ayt}r2

A general expression for the response of an Nth-order pole to a cos awt or
sin wt iput can be derived by considering cos aut and sin Wut to be the realan.L

imaginary parts of eJt i.e.,

cos wut =Re(e'

sin cut =IM (ej"')

Using this technique we find that response of an Nth-order pole, -q1 , to a
cos wut input is

j~t qt k-1 (.jw + q,)h

h=O

For an input of sin cut, the response is

h h'
-tq~t k-i (ico + q,) t

Qk hO k_

It is important to note that in evaluating the real and imaginary parts of the
above expressions qi must be treated as a purely real quantity even if it is
actually complex.

The responses for power series inputs are equally as complicated. For
example, if -q is a second-order pole other than zero, the response to a unit

42



step will contain the terms

1p 1 -eqit) Q'2 E--q-t~ i)
e +- e 1 1 qt

For a unit ramp, the terms are

,>l ..

(+ t) [qe q it( +t2)].2 e q i  I+qi + q t -2 +e (qt+ 2 ,

2 i£<4qi q.

The general expression for the response of an Nth-order pole to an input of tM/M:

can be derived by taking a partial fraction expansion of the product of the

laplace transfor-m of the input and the qi terms of the transfer function. After

a considerable amount of manipulation, the inverse transform gives a response of

V.

N - 1i M (M+k-j-l)! (-qit)3

' -M'+k (k- 1)! (M - j)! j!

k=1 (q.)±'
T ~~~ j=0 ~ij

e-qi t k-1 (M+k-j-1)' (qit)3
;_7 1.1" (k-j-1) ' j."'

j=0

From the previous development it is obvious that the sensitivity definitions

must be modified for N4th-order closed-loop poles. With the earlier definitions,

the gain sensitivity is equal to-(SG/,s)sqi but from Eq 10.5

'<,; 'Ss:_qi  '- .

I G\

or the original gain sensitivity becomes infinite. To modify the sensitivity

definitions for Nth-order poles, we expand the total differential of G to include

43 Xi
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higher order te .es, i.e.,

,n= 1 :.

0 ds d + j + dpj
j j=1

). + + dzj + + .. .,j.G

- 1 (ij

(der + d)-~d) dK -5
-:. s=-qi

"(116)! ::i nere (ds -5+. dK ]G= (ds)j '-. + j (ds) -dK G K :

j(j--) K) 2  WG+ 2! (s)j-()T +.. + (ad)

Retaining only the lowest order terms for each parameter and remembering that
the first (i - 1) derivatives of G with respect to s are zero at s = -qi, gives

n i -M+nl"_:' . . : . ,  (1) l,,t dK + jl (Gdz. + ;=E dp j

j=1 j=1 j jdqi = (117)

.: s=-qi[F &A
Equation 117 suggests using modified sensitivity definitions such that

n S m+n
dq [i  -K + j=1 i + 4-- ])

.l j=1

From Eq 117 and 118 it can be seen that if G is in root-locus. Bode, or mixed
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form,
N I .

3. S1 = _(-1) N! 19
K K 13NG.

For zeros or poles which are written in root-locus form, the sensitivities are

Si =zj zj - qi ' ¢%
Si (120)

SiS
i

For zeros or poles which are written in Bode form, the sensitivities are

i (z ( . %(-.i, 1

~ (121)

• ' PJ Pj (qi - Pj :qk:

Note that the relationship of the zero and pole sensitivities to the gain sensi-

tivity is exactly the same as that for first-order closed-loop poles; Eq 120 is

identical to Eq 55, and Eq 121 is identical to Eq 75. It is also important to :.

note that from Eq 104 and 119

N1S = Ni (122)

S QIN

As pointed out by Ur in a similar development (Ref. 15), Eq 118 reflects

0- the well-known characteristics of a branch point on a root-locus plot. The

incoming branches, which at their junction represent an Nth-order closed-loop

pole, are evenly spaced and separated from each other by 21r/N. The outgoing

branches are also separated from each other by 2n/N and are midway between the

W incoming branches.

I. %- .



SEIO.N JIII4

MODAL RESPONSE COEFFICIENT AND
GAIN SENSITIVITY EVALUATION FOR SINGLE-LOOP SYSTEMS .-

Modal response coefficients and gain sensitivities can be obtained in a wide K-"--4

variety of ways from either open- or closed-loop transfer function representa-

tions. The representations most commonly available in a typical problem are:

Open-loop Closed-loop

G(s) in factored form

Pole-zero plot Root loci, without complete sets
of compatible roots

G(jw) Bode plot Closed-loop Irc'db and red
asymptotic plots (when decompo-

G(±a) Bode plot (also serves as sition method is applicable)

plot of closed-~loop real roots

~versus gain)

I4. Correlating the information appearing on all these common representations serves

to supplement the information available on any one. For example, a closed-loop

IGrcldb asymptotic plot, found using the G(±) and G(jw) open-loop Bode plots ___

and the decomposition method, yields a set of roots which can be noted on the I -

root locus. Similarly, one branch of the root locus con.plete with gains might

provide sufficient information to allow a decomposition process to proceed using

the Bode representation. In any event, for most cases in practice the above

- forms will be sufficient to provide complete information about gains and closed-

loop poles. For the unusual circumstance where this is not true, the following

additional representations may be necessary:

Open-loop Closed-loop

G(s) in i polynomial form Root loci, with complete sets
of compatible roots

G( ,p) Bode plots Root loci as functions of gain
with as parameter

These various forms of transfer function representation supply the raw data from

which modal response coefficients and sensitivities are to be found.

',>., "i 6
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-. -The following discussion of modal response coefficient and gain sensitivity

evaluation is organized along traditional lines, with arn individual article for

each general form of transfer function representation. The articles appear

under the headings:

A. Direct Calculation

B. Root-Locus Methods

C. Methods Using Open-Loop Bode and g Plots

D. Method Using Closed-Loop Bode Asymptotes

Ordinarily different formulas for modal response coefficients or gain sensitiv-

ities are most appropriate to a particular form of representation. However,

because of the supplementary character of the several transfer function repre-

-. *.sentations available, certain formulas work well with several representations.

Consequently some interplay at the detailed formula level is inevitable. In

practice this is even more prevalent, since each of the transfer function repre-

sentations available in a given problem is likely to be most suitable for

computation of a particular modal response coefficient. Thus, in a practical

problem one might get several coefficients from G(jcu) and G(±a) Bode forms,

several other from a root locus, and the last one or two by direct calculation.

All the developments of this section are carried out for the general case

of an Nth-order closed-loop pole, but at a convenient step the results for the

specialized case of a first-order pole are often given.

To furnish a concrete example, all of the methods developed in this section

have been applied to a simple third-order system. The details of the computa-

tions are given in the Appendix. The example covers the use of the techniques

for closed-loop poles which are real and first-order, complex and first-order, v. '.

and real and second-order. The results, summarized in Article E, are also used

to illustrate the relative accuracy of the various methods.

A. DIRECT CALCUIATION

Of the many methods presented in this report for the evaluation of modal

response coefficients and gain sensitivities, only the two given in this article

can readily yield values to any given degree of precision. All the other tech-

niques involve a graphical construction or are based on certain approximations.
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Either of the direct-calcula-tion methods could -De added to a digital coputer

pr-ogram for loop-closing calculation to provide the modal response coefficients

- - and sensitivities.

nh Section II the modal response coefficients and gain sensitivities were z-9

given by, among other formulas,

Q (- 1)I 5  = - (125)

s=-q1

Evaluation of Eq 123 is particularly convrenient when the numerator and denominator

of G are know-n polynomials in s. Expressing G as

gives

G1- amu 1 1 (125) -

and t

I) = G I)S2 0 6s2 - G 13 -) Ts s T (126)

From Eq 125 and 125 it is obvious that for N =1

s=--i

= (127)

If N is greater than one., higher derivatives of G must be considered, such KM

a s 2G/ s12 (Eq 126). Repeated differentiation of Eq 126 combined with the

* requirement that the first (N -1) derivatives of G with respect to s vanish at

Is =-qi, shows that

48
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k <-1 (128)

s=--4

Conseatzently, :c'; T y

= s (1 29)

NA
K- +

~s Ns

Ka.

and
1.13

qis (-1) (1Ko _N 
-

N N
sc SW

I____

The~ -M meho

Tesecond. direct-calculation mehdderives from an alternate expression

for G, i.e., 
'

*K fl (S + Z)

m+n(1)
II(s+ p.)

j=1

*4



Then

-F = G[ pj] (132)

and .i . _

2[ Fn zj2 1 sGI) s2 1 \pjn ~ (133)-] =1 j=l, -,j s -(--]/ 11 (1F

-
4 'kS+")J- .

For N = 1, Eq 123 and 132 show that

Qi=SK - Fn 1 1m+n 1(~
1 1

zj qi pj - qi]

which is identical to Eq 59.

For N greater than one we must again consider higher derivatives of G, such .

as Eq 153. Repeated differentiation combined with the vanishing of the first

(N - I) derivatives shows that

n k m+nk

S-qi) = -q) ' k<N (155)

Consequently,

( NG= (_)N(NI (1 N m+n( (1r sN/s=_q E= (p I (136)
=Ii -- =q

and

N-i i (I)N-I N )

j=1 ( qi ) qi) (
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The computation of QiN or SK by Eq 137 can easily be set up on a standardized

work sheet and would probably be easier to use in a digital computer program

than Eq 1.30. It is also simple to show that Ea 137 is valid if any or all of

the terms of G are written in Bode form. __-

, .t-'

B. ROOT-LOCUS METHODS .

Three methods of using a root-locus plot to estimate the modal response

coefficients and gain sensitivities are described in this article. The first

two are approximate techniqueswhile the accuracy of the third is limited only

by the exactness of the plot and the required measurements.

The first method requires the locations of the closed-loop pole for two

slightly different gains, such as the segment of a locus shown in Fig. 5a.

Using finite increments as approximations to differential changes, Eq 118 and

122 give

1 (-1)N1 K(1i)38SK = N - AK (13)

Equation 138 can also be utilized if the change in the closed-loop pole is .2
obtained by some other technique, such as from plots and root decomposition.

The second perturbation method is obtained by considering K to be a complex

quantity. The normal root locus is then a graph of the closed-loop pole loca-

tions for K real. Now consider a small perturbation in the phase of K. The

closed-loop pole must then be perturbed a small distance normal to the conven-

tional root locus, and the phase perturbation of (G/K) must be minus that of K, .7

see Fig. 5b. Consequently, for perturbations normal to the root locus, AK/K -jAe ",

and Eq 138 becomes ,:

i NiI)N-IiN __

SK A(139)

where & = phase change, in rad, of G/K

Note that for N greater than one the locus is not a single curve at s = -qi but

is the junction of N incoming and N outgoing branches. In this case the Zqi of -..-

i'%



Gain K -IA

S=-(qj+Aqj) 
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Eq 139 should be picked midway between any incoming branch and an adjacent out-

going branch.

The third method, which will be called the vector method, has the advantage

that its accuracy is limited only by the precision of the graph and the necessary

measurements. Of the graphical techniques described in this section, this one

should generally be the most accurate. Its primary disadvantage is that it

requires a complete set of compatible closed-loop poles, i.e., all the closed-

loop poles for a particular value of gain, and knowledge of the value of that gain.

From Eq 97 and 122,

N-I )N-1 (s + qi)NGSi = iN - N I"g -s=i"
K N 1 + G

n
( NiK 11 (z. -i

m+n(1+W0 ) " (q - qi )

j=1

The right side of Eq 140 is a constant times a function which, with zeros at the

open-loop zeros and poles at all the closed-loop poles except -qi, is evaluated

at s = -qi" Thus, Eq 140 can be quickly evaluated us~ug the normal graphical

root-locus techniques with a Spirule or similar device. The principal quantities

for a sample system are shown in Fig. 6.

C. METHODS USING OPEN-LOOP BODE AND E PLOTS -

The derivative NG/6sN, and consequently the modal response coefficient and

gain sensitivity, can be determined from open-loop Bode or E plots. A E plot is

a plot of the amplitude and phase of G as a function of p for constant , where - -

.S + jV1 1 (141)

The conventional Bode diagram is then a special case of the E plot ( ) = ).

Because t plots, particularly for = +1, are valuable analytical tools for
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determining the closed-loop poles, it is highly desirable to be able to determine

modal response coefficients and gain sensitivities from the plots.

With held constant,

3G 3 lnG d lnLL 3 lnG
G ~ G (142)

s S ds dThE-1-

d ln [i I 15
and from Eq'141, ds43)

Equation 142 can now be written

3G G 3lnG

The second derivative is then I

32 G G 62 lnG 3 InG 3

Ts 's (np2T__V7 ). MR

Repeated differentiation combined with the vanishing of the first (N -1) deriva-

tives at s = i gives

N _1 N * (~) = (..q.)N[~~m'~J~q(146)__

G = 
3  (inR)N s

____1 ____

4=q F..M
. . . . . . . . . . . . . . . . . . . .. . . . . . . .

ReprseningG i tems f is apliudeandphae,,i~e, Z'



allows us to rewrite Eq 146 as

-I~~ 14 _____ ___

-1 ZP lnAr

':N -I I dlog A

(-qi)N 2. 3 0 2 6 ) N- 1 ;(log )N (2.3026)N (log ji) Nj
:. -. a)s=-qi

N 
(148)'' (-%i)N(2':m26):'-' [2' + qi'-

'.T J !=- .

;.. where AdAN = the derivative in
S(log 11) (decade)

14 3N deg
en = the derivative in d

,(log 1) (decade)

Therefore for N 1,

- :i

S = Q = (149)[\"A1  JP1l-1 +
[L20 131.93

and in general

Si ( -IN-I -Ni (2.3026)N
- (qi)N(

s = %N = (15)

L JN
[2 0 13193] s=-qi

Thus, for a first-orler pole the modal response coefficient and gain sensi-

tivity can be determined from the slopes of the amplitude and phase curves of a

, plot at s = -qi. If qi is purely imaginary, a conventional Bode diagram is

used; if qi is real, a Siggy ( = ±1) diagram is used and the cp derivative is
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zero. For a complex pole, a plot or the shifted Bode diagram method, to be

described shortly, must be used.

For multiple-order poles the higher derivatives, AN and N' must be evalu-

ated. This might be done by:

1. Measuring the slopes, A, and I, from a plot

2. Plotting these slopes versus log V.

5. Measuring A2 and (p2

IF. Plotting A2 and (2 versus log p

5. Repeating the process until AN and are found

An alternate method for second-order poles is to measure the radius of curvature

of the t plots. The radius of curvature of a curve defined by y = y(x) at a

point where dy/dx = 0 ( G/6s is zero at s = -qi) is given by

2
R dx2  (151)

The radius of curvature can be used to determine A2 and c, but care must be 21-I
exercised to properly account for the vertical and horizontal scales of the plot.

A simple method of computing A2 or q)2 is to:

1. Measure the radius of curvature (at s = -qi) in
the units of the vertical scale, i.e., db or deg

2. Divide the vertical scale by the horizontal scale,
e.g., (db/in.)/(dec/in.) or (deg/in.)/(dec/in.)

5. Square the ratio of step 2 and divide by the radius
-< of curvature measured in step 1

An example of both methods for a second-order pole is given in the Appendix.

1 An alternative to tLe use of plots for complex roots is to use shifted Bode

diagrams. The basic idea is easily understood if one remembers that the shape of

a root locus is independent of the location of the origin of the coordinates.

Consequently, the imaginary axis may be shifted an arbitrary amount without

changing the locus or the gain sensitivity. If the axis were translated so that

it passed directly through a complex pair of closed-loop poles, the gain sensi-\,'* :

tivity for either of these two poles could be obtained from a Bode diagram and
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W-Zt
Eq-- 150. Since Bode t~_~!~~ates are readily available, and the Bode diagram is a

well-nwn analytical tool, the shifted Bode diagram may, at times, be easier

to use than the g plot.

In constructing the Bode diagram the real parts of all the poles and zeros

=st be translated by the proper increment. For poles or zeros on the real axis

this involves only an addition or subtraction. For comalex pairs the shift will

change both the natural frequency, o, and damping ratio, t, of the roots. It is

easily shown that if the imaginary axis is shifted to the left (in the direction

of the negative real axis) a distance d = Re (qj), the natural frequency,

and damming ratio, ts, of shifted poles or zeros are

I<

For ts equal to zero, i.e., d = a, d., '

= CDI/iT~(153)

A third method using 9 plots is especially appropriate when the decomposition

loop-closure technique is applicable, although it also applies in general. The

basic idea is to find two sets of closed-loop break points for neighboring open-

loop gains. From these all of the 6qi due to the gain change can be estimated.

Because nK/K = A/K, Eq 138 can be rewritten

N.--1 K (,i) N

'--i -1 ,N-1 -_~ (15i) "
SK QiN A K

-O This technique is the Bode diagram version of the gain perturbation technique

discussed in connection with root-locus methods. Unfortunately, the method is

an approximation, i.e., differentials are replaced by increments, and may have

substantial errors if appreciable gain changes are used to develope the basic

O i data.
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D. METHOD USING CLOSED-LOOP BODE ASYMPTOTES

The amplitude asymptotes of the closed-loop Bode can frequently be readily

obtained by the methods of Ref. 1. These asymptotes can be used to estimate the

modal response coefficients and gain sensitivities. This is only an approximate

technique, and for accurate results the closed-loop pole must be widely separated

in frequency from all other closed-loop poles (except its complex conjugate) and

from all the open-loop zeros.

From previous developments we have

n

'. (s + zk)
Grc - """k=1

(I + K8) m+n

fl (s+q k )

k=1

; and
n

K II (zk  qi)

(-1 N-1 i k=1 (16)S)1 K m+n (6_(1 + Kbm) 1 (qk qi)

k=1 I.' .,

k~i

If -qi is a real root, the products of Eq 156 can be approximated by

2 '.'. n ~(_ q i ) X z  n f z  
- ,"

:' n - ,',

-. (zk  qi) q-" (zk)

k=1 k
(157).m+n Xq (m+n-N-Xcq)

r" (q- qi) "- (qi (qk)

k=1 k '

-k/i

where Xz  number of zeros of smaller magnitude than qi

".--' n-Xz  -"

fl (zk) = product of the (n-xz) zeros of larger magnitude

k than q.

X Xq number of closed-loop poles of smaller magnitudethan 
qi

(m+n-N-Xq)

r (qk) =product of the (m+n-N-Xq) closed-loop poles of
k larger magnitude than qi
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Combining Eq 156 and 157,

~! r.
i~~ _z-q n-Xz '[;

K(-qi) z (zk)
N- = k 0NK - (158) :

K (m+n-N-Xq).](1 +K5 n) rJ (qk)

k

From Eq 155 it can be seen that the amplitude asymptote, Aasy , of the closed-

loop Grc Bode diagram at a frequency equal to JqiJ is

J qiJkz 1I z 1Zk1

1 K50 k (159)
asym qqI (m+n-N-q)

k

Note that several terms in Eq 158 and 159 are identical except for the absolute> -. ,

value sign. Consequently these equations can be combined to give

s~ . (-I) (qi)N

,N-1i real and
2K QiN KI - u Aasy (rla >(-1) (-q) A qi real and < 0

where Xu = number of closed-loop, non-minimum-phase zeros and
poles of larger magnitude than q-, plus one if
K1(1 + KQ) < 0

Note that because complex roots always occur in pairs, the powers of (-1) in .-

Eq 160, (Xz+Xq+Xu) or Xu, can be considered as the number of open-loop zeros and

. closed-loop poles which, in the s-plane, lie on the real axis and to the right

of -qi' plus one if K/(1 + K62) < 0.

If -qi is a complex pole, Eq 158 must be modified slightly because the

complex conjugate pole has the same magnitude as qi" Then Eq 158 should be

written
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n-z
i'- K(-q i ) ZZk)

k .i -I N I i -( 1 6 1 )
-- N = ( S1) Ci+li q) (m+n-2N-Xq) (~

k

¢.. Combining Eq 159 and 1 61, :

N-1 Xkq z-  II- QiN S (-1) 1  - (-I)asy (1621

(I +K [-2 Im ( N q(q0)]N

The technique outlined above, although highly approximate, is especially [

easy to apply. Its principal merit is the quick, rough-cut view afforded from .,

*visual inspection of closed-loop asymptotic Bode plots. The major effect of a '.

dipole (closely spaced pole-zero pair, qizh) can be taken into better account ..'
by modifying Eq 158 and 160 slightly. For this one modal response coefficient

X. .X-2N

or sensitivity the factor (zh - should be used in the numerator of Eq 158 in

place fconqof t in or zk terms; it replaces a p term if szh < Iqpi and

rlsu a seterm if clos>o. Consequently the effects of the dipole can be a
replaces a zk temilh lqlcosqetyteefcsothdpleanb

included by multiplying Eq 160 by [I - (zh/qi)] if IZhl < lqi or by [I - (qi/zh)]

if IZhl> lq I"

Further refinement of the technique is possible along these same lines.

This is seldom warranted because the quick-view advantage of the method is lost '..

and., even when refined, the technique cannot compete, on an accuracy basis, with

the others discussed.

E. EXAMPLE

To illustrate the techniques described in the previous portions of this

section, all of the methods have been used to compute the gain sensitivities

and modal response coefficients for a simple example. The details of the calcu-

lations are given in the Appendix and the results are summarized here.

The example is a system with an open-loop transfer function given by

K
G(s) - s(s + )(s + 5) (163)

-- D'
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-'- A root-locus plot for this system is shown in Fig. 7. The calculations were

carried out for two different values of gain, K. The high-gain case was

selected to illustrate the procedures for complex closed-loop poles, and the

low-gain case illustrates the procedures for second-order closed-loop poles. In IVA

addition, the actual shifts in the closed-loop poles due to the gain change are

compared with the values predicted by both the high-gain and low-gain sensitivities.

For the high-gain case, the gain was selected to produce a complex pair of

*closed-loop poles with a damping ratio of VI_12. For this situation:

K = 2.070

.f.. q, = 5.099

S= o.45o(i - j)

q3  0.450(0 + j)

For the low-gain case, the gain was selected to produce a second-order

closed-loop pole. For this condition:

K = 1.128

q, 5.055 -

2 =0.472 (second-order pole)

The values of gain sensitivity which were computed by e-ch method are listed

in Table I. The values of S3 for the high-gain case are not listed because they

are the complex conjugate of SK. No attempt will be made to form any general ....

conclusions on the relative accuracies of the various methods except to note

that the values obtained by the root-locus vector method, which would be expected

'~ to be the most accurate graphical technique for this example, agreed very well

with the exact values obtained by the direct-calculation methods.

To get some indication of the accuracy of predicting the changes in closed-

loop poles from the gain sensitivity, we can compare the actual shifts between

the high- and low-gain cases with the changes predicted by the gain sensitivities.

This comparison is summarized in Table II. Considering that the ratio of the two

gains is more than 1 .8, the agreement is generally quite good. The one relatively

poor case is the shift in q2 predicted by the high-gain sensitivity. The pre-

" dicted change in the imaginary part of q2 is only half of the actual shift.
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SECTION IV

MULTILOOP SYSTEMS

A. MODAL RESPONSE COEFFICIEIBTS

The modal response coefficients for a multiloop system can be derived in a

manner quite similar to that used in Section II for single-loop systems. The

familiar expression

s=i rcjs (164~)

also applies to multiloop systems,bu risnwamecopctdfnto.

In general, Gr can be written as

__ 7H7
(11

G~rc + +F 2  (165)

where F1 and F2 are sums of terms which contain the transfer functions of the F
various individual elements in the system.

,~. As in Secuion II, define

N
Nr( 2 s (s + q) F (166)

N

Repeated differentiation of Eq 167 shows that

@1 
2F2 1E kJ 0, 1 < k <N-1 (168)

-c 6qi



and - q(-.q) .. (169)

Ss Sq i

A relationship for the summation for the modal response coefficients can

also be derived in a manner analogous to that of Section II. If there are no -___

multiple-order closed-loop poles, and if the number of closed-loop poles is

greater than the number of closed-loop zeros, we can write

Grc = + N (170)

Multiplying both sides by s, and letting s approach infinity, gives

KCL if number of closed-loop poles = I + number
of closed-loop zeros

0 if number of closed-loop poles > 2 + number (171
of closed-loop zeros

where KCL is the closed-loop root-locus gain of the system. This is directly

analogous to the result obtained for the single-loop case.

k, When there are Nth-order closed-loop poles, a result analogous to that for

single-loop systems is

.KL if number of closed-loop poles 1 + number
+ Qof closed-loop zeros

2C. k' i = 0 if number of closed-loop poles > 2 + number (7
of closed-loop zeros

B. SENSITIVITIES

For multiloop systems the closed-loop poles are functions of the gains, as

well as the pole and zero locations, of a number of transfer functions. It is

then desirable to know the sensitivity of a closed-loop pole to variations in

the gain, poles, and zeros of any of the transfer functions. To derive these --.

sensitivities, consider the characteristic equation of a multiloop system,

66
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[1 + (F2)1 =-0 (173)
-'Y~~u s = -'i2:

'-21 *

where F2 is a summation of terms, each of which is the product of various trans-

fer functions. To keep the discussion completely general, the transfer function

of any individual element in the system will be denoted by Gk. Naturally the

{ ' functional relationship between F2 (or FI) and any individual bransfer function

depends on the manner in which the various elements are connected. This func-

tional relationship can be determined from a block diagram or signal flow diagram

A. of the system.

Extending the notation to the gains, poles, and zeros, Kk is the root-locus

gain of the kth transfer function, and (-zkj) and (-Pk*) are the jth zero and
pole of the kth transfer function. The total differential of F can be written-

(analogous to Eq 116 and 117)

-1 2) N2= -
*. s=-qiN.,- s=_qi v'-\

N+1 ~JFI~ kmk+nk 1/N

L.1 +kdKk + dlkj + Gk (174)
:'.'[,."/ =I k-- 1 6 ]1Zkj d =1 2 dpk"U- .i' s=-qi  •

, or .-,

"W "' [(I)NIN"L 6F2 ( 8 Gk  nk 3Gk mk+nk Gk j I75)'4':'

where nk = number of zeros of kth transfer function, Gk

mk+nk = number of poles of kth transfer function

L = number of transfer functions

Note that as per Eq 168, the first (N - 1) derivatives of F2 with respect to s

have been set equal to zero.
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As in the single-loop case, we will define the sensitivities so that

[t ~~~ i  dKk +~ k j k mkt k dk) 1N

dqi = Si k + Sz dZk. + (176)

*..-.. 
=" 

.-

Equating like coefficients of Eq 175 and 176 gives

S N+ N F2  Gk
S FjTK [ (177)

-k 
1F1skIS=-qi

S K

Kk Kk-

~ I Gk I

si I F I (I 8) h

i/k° [K [ =S1k

zk< ZkJj (I179) :

IL'*4 .,-

-k 
Kk 

(181)

, :, k ,,q .

S--qi

S11
skjPj (180) , '
i 8 4

~~If the transfer functions are written in root-locus, Bode, or mixed form,

4%

v.... .........................

":"K "K - K k  T K : G k  
(1 8 1 ) '-<

;'k 
T k

-'L " 
"."6;



Consequently,

N+1 21S i) N! Gk(182)

k Ik
L s j s=-:

si 
(183)

Si
Zk
iSK Zk. - qi ( )

zk

"',. -'1

Pkj
Kkj p (185)SKk qi Pkj:.. -

Likewise, for zeros or poles which are written in Bode form,

Zk. qisi_ - (Zjq i (186'

Kk Zk

pj = q (187)Sk kJq Pkj)
bK

'N 
,'--':<

Two important features of the above sensitivity ratios are worth mentioning.

First, because the terms of F2 will normally be products of transfer functions

... . .zir6-
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to the first power, Gk( F2/ Gk) will simply be the sum of all the terms of F2
which contain Gk. Thus, the ratio of the gain sensitivities for K* and Kk will -
be the ratio of the terms of F2 in which Gj and Gk appear, evaluated at s -q1.

Second, the ratios of zero or pole sensitivities to the gain sensitivity of the

same transfer function are identical to those for the single-loop case. Conse-

quently, the previously derived (Eq 78 through 81) sensitivity relationships in rJ"

terms of the damping ratio and frequency or the real and imaginary parts of an

open-loop root also apply to the multiloop case.

i-, *, Because the normal procedure for evaluating the closed-loop poles of a multi-

loop system is by means of a series of loop closures, the above equations can be

utilized to form a relatively simple procedure for evaluating the sensitivities:

1. Calculate one of the gain sensitivities by applying one I .;;of the methods of Section III to the final loop closure

2. Compute the other gain sensitivities from Eq 183 .--
3. Compute zero and pole sensitivities from Eq 78, 79, 80,

81, 184, 185, 186, or 187

In many cases step 2 of the above will be the greatest source of computational
difficulty. No simple standard procedures can be established for this operation, - .. a
but there are several ideas which may be helpful. One of these is to make use of

the fact that at s = -qi, F2 
= -1. For example, if F2 were

F2 =GG2 + GIG G4 + G1G2 G3 + G.G 4

then

S11

sK3 -_ CGIGG 4 + GIG2 G3 + G3 G4  (1 + GIG2  '[ i[ ""+ GGG + G .G2G G,

KI I G1G3G + G G3 k

)s=-qi  s = -qi

K" G1G2) =~ 1 "*.S GG G + 1+ G3 G4 t,+IG2
Ki; 1G G 1 G3G4  + G1G2G

s=-q i  s-qi ,-
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The sensitivity ratios could be computed directly by setting s = -qi in the .- ,

proper equations, but for complex poles graphical methods may be simpler. The

products of transfer functions could be evaluated by constructing plots or

root-locus-like plots. From the known zeros and poles of the transfer functions, ____

a g plot could be constructed for g equal to minus the damping ratio of qi. The

construction would only have to be accurate for the frequency equal to lqi.

The amplitude and phase of the product of transfer functions can also be evalu-

ated by plotting zeros and poles on an s-plane graph, and measuring the amplitude

and phase at s = -qi" Once the products have been evaluated, the summations

with unity, which are sometimes necessary, could be done numerically. from a

Nichols chart, or graphically (preferably on polar graph paper).

As in the single-loop case, a useful check on the sensitivity calculations .-

is that the sum of all the zero and pole sensitivities is one if the transfer

functions are entirely in root-locus form and if N equals one (-qi is a first-

order pole). This can be shown from Eq 182, 184, and 185.

L Lk mk nk
'-j 1 L F ____1

+ Gk _ i-'

k=1 j=1 k k=1  \j=1 Zkj -k=1 "= Zk "_ _"_ "

mk+nk

+ (1 88)

j=1 qi Pkj s=-qi :
The derivative 6F2/3s can be written as a'A

m.+._.,.s)-s=-q i  k=1( S -) i

Consequently, 'S 1 + =

nk mk+nk *,,

S j1(190)

Zkz kj -- qi -j
k=1 ==1 " "=

Conseqently
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- Tze relationship between the gain sensitivity and the mrda! response -7

"7- coefficient can be seen directly fra Bq 169 and 182.

- . s=-qi

For a m=!tiple iniut--=tut system there wii! be a set of rmedl response coeffi-

cients for each input-ctput combination. All the coefficients can be evalm ted
by means of EA 191 if the iroper numerator, FI, for tch input-output pair is used.

C. wwzz

Mke altitude control system of Ref. 2 will be used as an exar!e. in that

system, pitch angle, 6, and altitude, h, are fed tack to the elevator, Fig. 8.

Fiur 8.-.-... &a=-I

• _-_

| o

In Fig. 8, anrd H6 are the airfre-e pitch angle and altitude transfer functions,

Yand 'Yh are the equalization and sensor dynamics, and Y8 is the elevastor servo

dynamics. -From Fig. 8 it can be seen that the closed-loop transfer function is

Grc = h Y hHY +v 98 8(1 2

722
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For convenience, the notation

G2  b (193

dil be used. The form of the transfer functions and numerical values which were

used are:

K a-h i\+(s +-2 ;\( i
G, = 3

(s + ahs(s2 + + ccs + (s2 + 2tspwss + (Ijp)

C-2 2 + (~194)

G s + s +w( .L)s G)

(s2 + 2tpqa s + c)(r, 2 + 2tup + OP)

where xc~m 127.5 t .

Ah =-69.8 c =50

I =h 0.0064 KeK, 2700

1/T2  Th =19.2 Ae =26 .

t = 0.0714 lIT89 = 0.0098

=b 0.063 lT 2 =1-372

0.4~93

=p 4.27Z
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The characteristic equation of this system is

(I + G1G2 + G2 G3)s=q i  0 (195)

The technique for determining the closed-loop poles which was used in Ref. 2 was

to rewrite the characteristic equation as

= O (196) :

s=-qi

Equation 196 can also be written as

(s +- (s +I s T

a KmAh 0 (197)

s(s + %)Zh t.L s=-qi

where L7 contains the poles from the 1 + G2 G3 inner-loop closure, i.e.,

iIL (S2 + 2 tmmS + a S+)(s2 + pS + a)(s2 + 2t spaos + ap)

+ KmeAe(s + aL) + s +

- (s + 0.011)(s + 1,05)(s + 3.5)[s2 + 2(0.32)(35)s + (35)2]j(s + 47-5)

When the final closure is made, Eq 197, it is found that the dominant closed-

loD Doles are a complex pair at approximately s = -0.287 ± jO-8 69 (cu = O.915,

0.314) ' The sensitivities for this system will only be determined for

these dominant poles. Actually, only the sensitivities for the pole,

-0.287 + jo.869, will be computed. The sensitivities for the !onjugate root are

the complex conjugates of the computed sensitivities.

These values for the closed-loop poles are slightly different from those
given in Ref. 2. The values given above were obtained by using a more accurate
approximation to the closure than was done in Ref. 2.
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The firzt step is to determine one of the gain sensitivities. The simplest

one to do is the one for K1 (the gain uf G1 ) using the closure defined by Eq 197.

Any one of the techniques of Section III could be used to evaluate S'1, but

because all of the other sensitivities will be computed from S1  we will use

the exact analytical expression

"':" -1"

". I I (199)K1= [E 'I,- q. Pk q ""

..-.- k .-

where and zk are the poles and zeros of G1 I2 /(1 + G2G see Eq 196 and 197.

This computation gives

S i  = -(0.175 + jo.492)
K1 KI ) -,.

-0.521 exp 704 (200)

For the sake of brevity, we will adopt the notation

Aejq  A 4 p (201)

and express S I as S1 = 0.521 4 250.4 deg (202)K,
41.

Vote that because F1  GjG 2 =Gj F2/6Gj), S' is equal to the modal response

coefficient for h/hc.

As the next step, SK2 and S' will be computed. From the sensitivity ratios
* 3

of Eq 183,

( K2 GIG2 + G2G -I (203)
" :S 1 I  G GI (G2*K \ G1 2  /( 1 2)

1 s=qi  s=-q i

SK3  2 
3fs2)S=_

*...~ ~*~*.*-. *., ~ .*.. - - -

K1i "i 
-q-
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- By plotting the poles and zeros of CT and G2 on an s-plane plot, (G1 G2/K 1 K2 ) sq i

can be measured with a Spirule or similar device. Multiplying by the gains gives

-0.160 53.3 deg (205)

K1

- ." Therefore,

S = (0.521)(0.160) 4 (250.4 + 53-3) deg -

' 0.0835 4 303.7 deg = O.O464 - jo.0694 (206)

Similarly, by plotting the poles and zeros of G and 1/G1 _,

SK G~

= 0.965 4 172.4 deg

SSi

K1 s=-q i

K = 0.501 62.8 deg = 0.230 + jo.446 (207)3

From Eq 203 and 204 it can be seen that S i S' - S should be zero. Using:K1  K3  K2 su bz . i
.7 the computed values gives 9

S., si +S S -s = 0.009 + jO.023K1  K3  K

Considering the graphical techniques used the agreement is quite good.

Now the pole and zero sensitivities can be computed from the simple sensi-
tivity ratios of Eq 1 84 and 185. The results are summarized in Table III. It

was noted earlier in this section that the sum of all the pole and zero sensi-
tivities of each closed-loop pole should equal one. The actual sum of the Jsensitivities of Table III is 1 .009 + jO.029. This agreement is excellent

considering the inaccuracy of the closed-loop pole, the graphical techniques

used in the calculations, and the fact that the numerical computation was all
done by slide rule.
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TABLE III

ZERO AND POLE SENSITIVITIES FOR MELTILOOP EXAMPLE

'21

TRANSFER P SENSITIVITY., FUNCTION (Z)SaITVT .

~~r *N

s- 1 0 0.568 4 -37.9 deg = 0.448 - jo.348

15 0.0353 4 67.0 = o.o14 + jO.033

0.0045 + jO.0628 0.535 -4 -36.4 = 0.431 - jO.317

0.0045 - jO.0628 0.609 .4 -38.8 = 0.475 - jO.382

2.10 + j3.71 0.1058 4 2.0 = 0.106 + jO.004

2.10 - j3.71 0.1547 4 127.9 = -0.095 + jO.122

(0.0064) 0.571 4 142.5 = -0.452 + jo.347

(19.2) 0.0275 4-112.2 = -0.010 - jO.025

(-19.2) 0.0267 4 75.0 = 0.008 + jo.026

2 35.0 + j35.7 0.001654 77.2 = 0.0004 + jo.0016

35.0 - j35-7 0.001704 168.8 = -0.0017 + jO.0003

3 0.0045 + jo.0628 0.516 4 136.0 = -0.371 + jO.358

0.0045 - jo.0628 0.590 4 133.6 = -o.4o6 + jo.426

2.10 + j3.71 0.1023 4 174.4 = -0.102 + jO.010

2.10 - 03.71 0.1492 .4 300.3 = 0,075 - jO.129

(2.4) 0.221 4 40.4 = 0.168 + jo.143

(0.0098) 0.552 4 315.1 = 0.391 - jO.389

(1.372) 0.361 .4 24.1 = 0.330 + jo.148

. % I
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Note that the phugoid (oD) and short-period (usp) poles appear in both GI and G3'

Consequently, the total sensitivities of these poles is the sum of their sensi-

tivities when considered as poles of G, and of G 5. It is also desirable to

convert the sensitivities for the complex-pair poles to damping ratio and

frequency sensitivities per Eq 78. The final sensitivities of all the variable

parameters are sunmarized in Table IV. The gain sensitivities are separated

from the pole and zero sensitivities as a reminder that gain sensitivities are

based upon fractional variations rather than absolute variations.

TABLE IV

MULTILOOP EXAMPLE SUMMARY

q = 0.287 - jO.869 "" ,"
GAIN SENSITIVITIES

Parameter Description Sensitivity

Ka  Gain of altitude feedback -0.I75 - jo.492

Ke Gain of pitch-angle feedback 0.230 + jo.446

KM Gain of elevator servo o.o46 - jo.069
Ah Gain of H -0.175 - jo.492

Ae Gain of ea0.230 + jo.446

POLE AND ZERO SENSITIVITIES

Parameter Description Value Sensitivity

ala Altimeter lag V.0 e14 + jO.O55
" . Lead in pitch-angle feedback 2.4 o.168 + jO.143

Damping ratio of elevator servo 0.7 -0.0019 - jo.0024

Frequency of e'evator servo 50.0 -0.0018 + jO.0028
I/Thl First zero of Ha 0.0064 -0.452 jo.347
1/Th2  Second zero of H5  19.2 -0.010 - jO.025

1/Th Third (unstable) zero of H6 19.2 -0.008 - jO.026

1/Tej First zero of a 0.0098 0.391 - jO.389

O/Te Second zero of ea 1.372 0.330 + jO.!48

•p Damping ratio of phugoid mode 0.0714 0.0084 + jO.0053r Frequency of phugoid mode 0.063 0.0121 - jO.0045

'- Damping ratio of short-period mode 0.493 -0.018 - jO.028

asp Frequency of short-period mode 4.27 -0.025 + jO.025
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An examination of Table IV reveals a number of interesting bits of informa-

tion: C. $
1. The gain sensitivity of Ka and Ah is nearly equal to the

negative of that of Ke and Ae '

2. The gain sensitivity of Km is much less than that of the
other gains

3. On the basis of the same percentage change in parameters,
the dominant mode is most sensitive to a, COL, 1/To2 , I.'

1/Th2, and 1/Th3

We now know which parameters are the most important to the dominant mode of the

system, and can estimate the variations in the dominant roots which could be

achieved by changing the gains. By combining the above results with "approxi-

mate transfer functions" or an equivalent technique, which can relate the zeros MET,

and poles of the aircraft transfer function to the stability derivatives, we can .

estimate the changes in the dominant roots due to variations in the flight con-

ditions and due to uncertainties in the inertial and aerodynamic characteristics

of the vehicle.

M.

U&U t"t'

• ) '. S
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SECTION V

SMARY

A good many derivations and relationships are scattered throughout this

report. To facilitate the use of the material contained herein, the important -...

results have been summarized in a number of tables which are contained in this

section.

Table V lists the relationships between the modal response coefficients and

the system responses for various inputs. Part A contains the relationships for

N = I, and Part B contains the general relationships.

Table VI lists a number of useful identities. Part A lists- the identities

for N = 1 and Part B lists the general identities.

Table VII contains the sensitivity ratios. Part A is the ratios for zeros

or poles which are in root-locus form. Part B is the ratios for zeros or poles

in Bode form.

Table VIII summarizes all the methods for computing gain sensitivities which

were developed in Section III. The table lists the pertinent equations along

with some of the advantages and disadvantages of each method.

. ..
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* TABLE VI-A

r. IDEINTITIES

j Yi
4$ K -SK

Single Loop with Unit FeedbackmnKm1

m~nK~b-a 1 K) m= K' m2

-K ,K 0= m1 q 2+ =

=~b a, + K) n

m ~ ~ ~mn Q qk0.
3 i++Qi~i qi - mj

fln Q~

S1 + S1

Multiloop

F 1 ] Si
Gk(F2Tk Kk

number of closed-loop poles 1+ number of
= CL closed-loop zeros

0 number of closed-loop poles 2 + number of

closed-loop zeros

~jS)= all zeros and poles in root-
k=kj1 i = locus form
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TABLE VT-B

DENTITIES

GENERAL

m+n
1=

~k~i~h ~ _+11

Qk=NkN-k-i h [+ m+n h

Single Loop with Unit Feedback

N-1i

~~~(- S~
iN

Multiloop

QiN Gk62/G (s=Nqi1S k

nLumber of closed-loop poles =1 + number of
CL closed-loop zeros

i n umber of closed-loop poles> 2 +number of
cloed-oopzeros
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TABLE VII-A.

SENSITIVITY RATIOS

ZEROS OR POLES IN ROOT-LOCUS FORM

= k
SZkj Zk-

Kk__

+2( - NO~

T4. 2aq S 2

-, 2tarq. + a)

*+2(a -iS

S 1

2 2 22
-2aq. + a + b

Use upper sign for zeros, lower sign for poles. B
85
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TABLE VII-B

SENSITIVITY RATIOS

ZEROS OR POLES IN BODE FORM

q.S

Zk. - lKk i

1 1
Pkj Pk- (qi -

±-2qi ~c q.) S

~ Si

S1 KS

i~ -i 2 W

=a a2+ b2 qi 2aqi + a2 + b2

±2qi~b (2a - q)Sa2 2

*Us up;;r signforzers, owe sign forpoes
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TABLE

METHODS OF CO!PUTiN(

EQ UATIO!s

''AJ~~ - CLASS -

Direct calculation Nueator and denoirator S !  S F(-I N!

derivatives L J

4s:--

Su=Ation of terns S - = S N

[tK = =

"" "" i "qi S! "i (2 26"

Root locus Gain perturbation SK K LK

;. -\1- x2 E olzna

phase perturbation S
I " Ki S _

i -
K 71-K n

:" n

K 1i - qj) N.. K -

eco K m+n K n

(1 + Kg) j qi) (i+K8)

_________ j -N!(2.3o26)
Oen-loop, Bode and Successive slopesS S
t plots 'C tj + ____ I A 2L

d
2
y I ( /vrtical e

Radius of curvature Not applicable -X R horizontal

Shifted Bode 2 wl d2 s = yu- 2;;d

* cnd t,- d

Gain perturbation Si KK

Closed-loop Bode A.jplitude azywptores q.I)' q , real and >0 (i

Siu q. a ,y q, real and <0 (-1 Kq

( ( 3)' qu -1--21---(-- q, complex Iq 1

- 0f



TABLE VIII

I4ETHODS OF CO!.PUTING GAIN SENSITL-VTIES

A.CCUR.;Cy

= ENALu-zerical Graphical AF~

F N-1-
Ff t L7 ds C S=-q

o~~L 1 N]-)~

F [ ~?~ +o

rL n
=1 S4 K nj~ (Z -_ _~ -

(I K52)( ('qj qP (I + K62) 1 qj - q -qj)

J. Jt41

K q -N (2 3 2 ) -
),),

=1 
+

+K~g) II ( 'q4
) , .=1

vJrica scl

2. d sr 2;, + d2
C_________ -1:252) d q

_~ i-q __

K K

q. Aas , real and >0 ( (-i) Aa..y , q, real and >0

-1)~ q,~ real and <0 S (-I) U(q,) An~ , q1 ra/ad<

qq ~ ;, , complex( ~ ~ q1  complex

87



GAIN SENSITIVITIES

ACCOACY

____ ____ ____ ___RE'APOS

APPROXIMATE
" =erical Graphical

1. Simplest numerical method for b-y-order systems.

2. Requires open-loop numeraor and denn=!nator polynomials-

-2-1

Ip -_q I. Simplest numerical method for high-order systems.

V/-

/ I. Simplest root-locus method. t." easily obtained with Spirule.

I. Ordirarily the rst accurate graphical technique.

V 2. Requires complete set of compatible closed-loop poles.

.
N

1. Need only the portion of the Bode or plots about IGi . I.I

2. Accurate measurements of slopes or radii of curvature are
. ,,frequently difficult to obtain.

I. Method is simple arnd speedy when decomposition technique is
applicable.

2. S~nsitvlties for all closed-loop poles can be computed from

rl d ore gain change when decomposition technique is applicable.

c. Method is ordinarily simple and provides quick overview when)NAnsy q, real and >0 c l ose-loop Pv do , isymp otie p ot is available .

2. The closed-loop poemust be wieysprtdinfrqec
. "_''.'%from all zeros (except dipole zero, -Zh) and fro m all other%" "" " q, real and <0 cieosed-loop poles except its complex conjugate; to correct
' " 2 for dipole, multiply sensitivity by

,2 j I, - m ( q i )] q c o p e x•

4 - , *, ;

Z 

"
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APPEN4DIX

SINGLE-LOOP EXAMPLE

The use of all the methods for computing gain sensitivities and modal response

coefficients will be illustrated for a simple example. The sample system has an

open-loop transfer function given by

' 'G =K (A-1)
,s(s + 1)(s + 5) (

The computations will be given for two different gains. The high-gain case

illustrates the procedure for complex closed-loop poles, and the low-gain case

is an example of the computations for a second-order closed-loop pole.

A. HIGH GAIN

For this case the gain is set so that a pair of complex closed-loop poles

with damping ratio of /'2/2 exists. For this situation the important parameters

-3 7K = 1 -156 = 2.070

q = =2 5 - 99

= -1(6 -V()(I -j) = 0.450(1 j)

q (6 2-)(1 + j) = o.45o(i +j)

1. Direct Calculation ,01,

Using Eq 127 for the numerator and denominator derivatives method,

Q s K (A-2)

.... ~~ s-qi .
From Eq A-I, = I

3 2= s + 6s+ 5s

2
= s + 12s + 5
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Therefore, -

= 1 K (A-
12qi -'3q - 12.+ 5(A

Using the value for q2 gives

2 -3276 + 701 iI2 + j(8112 - 987Vr)
2 S - 6290

= 0.0474 - jO.490

= 0.492 4 264.47 deg K
where the abbreviated notation

A~cp - AeJ ) "

has been adopted.

Because q, is the complex conjugate of q2 . Q3 and S are the complex conju-
-~ 2gates of Q2 and SK or

Q s = S - _ -3276 + 701 V2-6 - (8112 - 987Vr
3 K 6290

= -0.0474 + jo.490

= 0.4924 95.53 deg

Using the value of q, in Eq A-3,

S1 -32761 + 0 = 0.09+19

As a check, recall that in Section II (Eq 19) it was shown that i" there are

no multiple-order closed-loop poles and the number of system poles is greater

than the number of zeros by two or more, then the sum of the modal response

coefficients or gain sensitivities is zero. These conditions are met for this

example, and we can see that the values do sum to zero.

90 "\'
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*The secondU method~ of iret c lculato called the summation of terms method,

uses Eq 134, i.e.,.

S11 (A-4)

1 -~ 1ipk
k-iZ1 -q k=1 k

These computations may be performed in the following manner:

-qq

0 -0.45049 + jo.45049 -1 .1099 - ji .1099

I 0.54951 + jo.450l1. 1 .0883 - jo.8922

5 4.54951 + jo.45049 0.2177 - jo.026

( 1 =o0.1961 -j2.0237 -

rA

2K -0.0474 -jo.490 = 0.492 4 264.47 deg

S3= -o.o474 + jo.490 = 0.492 4 95.53 deg

and

Pk (Pk q1) Pk q1

0 -5.09902 -0.196i

1 -4.09902 -0.2440o_

5 -0.09902 -10.0990

X (P I q) = 10.5391

S1 0 0949
K

Naturally the results agree with the first method because both methods are exact.
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2. Root-Locus Methods

The root locus of the example system was shown in Fig. 7. To estimate the

* gain sensitivity from Eq 138, a position on the locus of -0.41 + jO.76 was

chosen. The measured gain at that point was 3.89. This gives an estimate of }.' a'

[0.41 - jO.76 + (-0.45 + jo.45)] ___

S K v 2.07 3.89 -2.07 I.--

- -0.o45 - jO.353 = o.356 4 262.7 deg

which has an amplitude error of 28 percent and an angular error of 2 deg.

For ql the point -5.42 was selected, and the gain was 10.06. Then

-4
N

S2.07(5.42 5. o) .8
.,4 K 1O.06 - 2.07

Despite the fact that the gain was increased to nearly 5 times its original value,

the estimate is within 13 percent of the exact value. r'A.'

To obtain estimates from Eq 1 39, perturbations normal to the locus were con-

sidered. For q2 the point -0.64 + jO.47 was selected, and the measured phase

change was -24 deg. Then

2 j[.6 - jo.47 + (-0.45 + jO.45)]
-K 6 -24/57.3

.-- 0.0477 - jo.454 = 0.457 V 264 deg

This estimate is fairly good; the amplitude error is 7 percent and the angular

error is less than I deg.

For ql the point -5.10 + jO.10 was chosen. The phase change was 47.5 deg,
so It.S,

1 • j(jO.10)(57.3) 0.121SK 47.5 01

This estimate is in error by 27 percent.
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The third means of determining sensitivity from the root-locus plot is by

the vector method, Eq 140. For the example,this equation reduces to

K

1= (q 2 -ql)(q- -ql) 

= K
K (q, -q 2 ) (qT-q2 )

The following were measured with a Spirule:

(q 2 - q) (qT-q 1 ) 00-59

1
= 0.257 -95-5 deg

which gives

S1 " 0.0952
K

S . o.49o 264.5 deg

These values are extremely close to the exact values. Both amplitude errors are -.

less than 1 percent, and the angular error of S. is less than 1 deg.

5. Methods Using Open-Loop Bode and E Plots

A plot of the example for t = -0.7 is shown in Fig. A-I. A small error

has been introduced into the solution from the use of the E -0.7 templates

because the actual value of E at q2 is -I/%/2 = -0.707. The slopes which were

measured from this figure are

A 1 = -17 db/dec

p = -129 deg/dec

N

9.

r-ko
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Then from Eq 149

:2 _ [-0.450 + jo.450]

K 17 j129
20 32

-[0.0341 + jo.490] = 0.491 4 266 deg
,-.'_ -,"

This is within I percent of the correct amplitude and 2 deg of the correct

angle. The extremely small error in the amplitude must be considered fortuitous

as the errors in measuring the slopes will normally be higher than this.

For ql we must use a g = -1 or Siggy plot. see Fig. A-I. The measured slope

from this plot is -830 db/dec, but the root is too close to the open-loop pole

to get an accurate value. A better estimate can be obtained by noting that the

two low frequency roots contribute about -4o db/dec, and the contribution of the

pole at -5 can be approximated by (Ref. 1, Table III-A)

-20 -- 5.10 =-1020 db/dec Nt
3.1G 5 _

Therefore, AI  -1060 db/dec

and S - 20-5.0)- 0.0963S-1060

This is within 2 percent of the exact value.

Instead of using the 9 plot for SKJ we might use the shifted Bode plot. jj.
Shifting the imaginary axis 0.450 to the left so that q2 and q5 are on the axis

puts the open-loop poles at 0.450, -0.550, and -4.550. The shifted diagram is

shown in Fig. A-2. The measured slopes are '

Al = -19.2 db/dec K M'

= -11.75 deg/dec
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Therefore,

S2 0= 0.467 264.7 deg
19.2 11.75

0 132

This is an amplitude error of 5 percent and an angular error of less than 1 deg.

The Siggy of Fig. A-I can also be used with the root decomposition technique

to estimate nq due to a gain change. For a 6-db increase in gain, "K/K = 1, _

root decomposition gave

1.1

, -0.05 - j0.345

Therefore from Eq 154 S1  0.10
K-' :

which is in error by 5 percent, and

K = - 05 - jO.45

O. 348 .4 262 deg

, WE
which is a magnitude error of 29 percent and an angle error of lesc than 3 df-g.

4. Method Using the Closed-Loop Bode Asymptotes

The closed-loop Bode amplitude asymptote will be unity (0 db) for frequencies

up to 0.657 and at that point it will break down at -40 db/dec. For q2, then,
A 1

asy

z qXu = 0

and from Eq 162 2

2 (0.637)K j(0.450) 0.451 4 270 deg

This is an error of 8 percent in magnitude and 5.5 deg in direction.
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0o.637\
For q, A (= = 0.0156

=zxU 0, ?q =2

From Eq 160 S' (5 .1o) (o. oi56) 0.0796

This is an error of 16 percent. T~

B. LOW GAIN

~ii We will now consider the case when the gain is set so that there is a second-
order pole on the negative real axis. For this case the important parameters are:

2
K (7V21 - 27) =1.128

9

q = (6 + 2V A(_ 5. 05.5

= 2 (6 -V2-1) =0.4172 (second-order pole) N'-

1. Direct Calculation

The numerator and denominator polynomials and their derivatives are

c7Lr,

=s 3s + 12s +

=6s + 12

98



Then using Eq 130 for the numerator and denominator derivatives method,-

! ~ sK-M- // - 2K"
K [(32M 2) + (- s2  -6q 2 + 12 1:'.

-6-3 = -o.246

i i -__,_-

SK =
[K(&x.'s; 3q -2q 1 +"5

*j F9 (7V2T - 27) = 0.0537

Note that for this case the evaluation of the gain sensitivities only determine

two of the modal response coefficients,
,<

= K

2

To evaluate the third coefficient , 21 we must make additional calculations.
For this case the easiest method is to use Eq 113, i.e.,

or = 1

The same result could be obtained from Eq 112,, which for this case reduces to

-.4 .- *4*:.
QP' 2 (49 9 9V2-)

=2 I3 2 9 I

r -2- = q- q2  -(6 + 2V -(6- . )6 V2-

• :'"". ,-- -

(7V2 27 -S '""
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For the second method of direct calculation, called the summation of terms

method, from Eq 137 we have

1-1 I

k=1 k q.)

2 -2
/ 2

k=1 k q2)

We can set up a computation procedure similar to that used for the high-gain case,

I,_k(k -q2 ) -"--
P~k - q ~2

0 -0.47247 4.4797

1 0.52753 3.5934

5 4.52753 0.0488

22

':' " "(Pk 1 q = 8.1 21 9 -

2 -0.246S~K=

Ix,. (pp
4% q. 1 ) " *"'<Pk (k -ql )  

- q,'

0 -5.05505 -o.198

4-'. 1 -4055o05 -0.247 .

5 -0.05505 -18-165

-~ 1 ) = -1 8,6."io

S K 0.0537
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2. Root-Locus Methods

For the gain-perturbation method the gAin can be increased to 2.070, for which

the root was previously determined to be -0.450 + j0.450. Then from Eq 138

1.128[0.450 - jO.450 - 0.472] 2

K 2.070 - 1.128

- -0.242 + jo.0237 = 0.243 4 174.4 deg

Even though the ratio of the gains is more than 1.8, the estimate is within

2 percent of the correct amplitude and 6 deg of the right direction.

Similarly for ql,

1 .128[b5.099 5 .055 =0.52S 0 .0526

2.070 - 1.128

This is a 2-percent error. -,

Using the phase-perturbation method for q2 , we need a perturbation along a

line midway between branches of the root locus. Selecting a perturb-tion of

0.25 at an angle of 45 deg gives a phase change of 14.6 deg. Therefore, from

Eq 159
2

j57.3- C2 (I + j)]
2 •= -0.245
K -45.5

This is an error of less than 1 percent. "

For ql a perturbation of jO.1 was used. This gives a phase change of 63.7 deg.

Then, , .

j57- [-jO.] - 0.090-

63.7

This estimate has a large error, 68 percent, but this should not be surprising

because the perturbation selected was nearly twice as large as the distance from

ql to the open-loop pole at -5. Under these conditions, higher order effects are

certain to be important.

1'0k. 101%
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The root-locus vector method, Eq 140, for this case reduces to simply

K Ks = _ ) = 0.0537 - q

2 ,, -'i

S - - -o.246

tk 1

3. Methods Using Open-Loop Bode and E Plots

The = -1 or Siggy plot for this case and the slope of the Siggy plot are

shown in Fig. A-3.
¢ ,' : 

k

.V1 1

-20 
.'

Slope Ai,
db/decI~ ~ ,,! _,

S 0 db for r. il

20db

Amplitude
Ratio, db Iq2

__ 0.1 1.0

Figure A-3. Low-Gain Plot

1 02



K.M.

For q2 , Eq 130 becomes S.

2 -2(2."0) (20) (q2 )
2

2~

Two methods of evaluating A2 were used. The first was to measure the slope of'

the Siggy (this is A1 ) and plot this slope versus frequency, see Fig. A-3. The 4-.,

slope of this curve is then A2 . The value measured from Fig. A-3 was 73 db/dec2.

This gives

S -0.281

which is in error by 14 percent.

The second method was to estimate the radius of curvature of the Siggy at a

frequency of 0.472. A radius of 30 db appeared to match the curvature of Fig. A-3.

The vertical scale of the graph is 20 db/in., ana the horizontal scale is
k3.

0.4 dec/in. Following the procedure outlined in Section IIT gives
2 .,'..-.

I 2
20 db/in. 1 8% 2A2 0 dec/in. 30 db 33 db/dec

This gives a sensitivity of'

2 -_0.247

-..

which is amazingly close to the exact value (less than 1 percent error). The

4 surprising agreement is obviously fortuitous as the method is certainly not that

accurate.

For ql we are again faced with the problem of being on an extremely steepV portion of the Siggy. Rather than attempt to measure the slope, we will estimate

it the same way we did for the high-gain case. The two low frequency 'oots

F contribute -40 db/dec and the root at -5 contributes

-0= -1838 db/dec -'.'-.: ~~5.o55 -5,.-v
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Therefore A -1878 db/dec

1 S -20(5.055) =
and S K-278 00539

which is within 1 percent. LV,,

For the gain-perturbation method a gain change of -6 db (aK/K = -1/2) was

selected. It can be seen from Fig. A-3 that this change splits the second-order

pole into two first-order poles with L-. *

q = 0-13, 0.83

Thus ',{

,0.13- 0.47 -o.34

=6q or
to.83- 0.47 = 0.36

Either value of , could be used in Eq 154, but because neither value has a

theoretical advantage the average magnitude of the two was used. Therefore,

- -0.245

This is less than I percent error, although the method is obviously not generally

that accurate.

For q, we make use of the fact that

q,. Pk

i k

so that with the gain change N \. .

q1  = 6- (0-13 + 0.83) = 5.o4

Then S1 5.04 -5.055 =S = 003kK 1 -

This is an error of 44 percent.

io4
%.-
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4. Method Using the Closed-Loop Bode Asymptotes

The closed-loop Bode amplitude asymptote will be unity (0 db) for frequencies

less than 0.472 and at that point it will break down at -40 db/dec. For q2, then,

asy =

X=X Xu

2 2
and from Eq 160 S2  -(o.472) = 0.223

This estimate is within 10 percent of the exact value.

For q, .7

A =(=0.00873

asy .05*A

= Xu 0, Xq 2

and S' (5.055)(0.00873) =o.o441

which is an error of 18 percent.

10
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